RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Nasibov, Sharif Mamed ogly

Statistics Math-Net.Ru
Total publications: 14
Scientific articles: 14

Number of views:
This page:1351
Abstract pages:2417
Full texts:506
References:377
Senior Researcher
Candidate of physico-mathematical sciences
E-mail:

http://www.mathnet.ru/eng/person18568
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/228152

Publications in Math-Net.Ru
2019
1. Sh. M. Nasibov, “On the Collapse of Solutions of the Cauchy Problem for the Cubic Schrödinger Evolution Equation”, Mat. Zametki, 105:1 (2019),  76–83  mathnet  elib; Math. Notes, 105:1 (2019), 64–70  isi  scopus
2. Sh. M. Nasibov, “Nonlinear evolutionary Schrödinger equation in a two-dimensional domain”, TMF, 201:1 (2019),  118–125  mathnet; Theoret. and Math. Phys., 201:1 (2019), 1514–1520
2018
3. Sh. M. Nasibov, “Absence of global solutions of a mixed problem for a Schrödinger-type nonlinear evolution equation”, TMF, 195:2 (2018),  190–196  mathnet  elib; Theoret. and Math. Phys., 195:2 (2018), 658–664  isi  scopus
2017
4. Sh. M. Nasibov, “On the Equation $\Delta u+q(x)u=0$”, Mat. Zametki, 101:1 (2017),  101–109  mathnet  mathscinet  elib; Math. Notes, 101:1 (2017), 123–131  isi  scopus
2016
5. Sh. M. Nasibov, “On a Generalization of the Entropy Inequality”, Mat. Zametki, 99:2 (2016),  278–282  mathnet  mathscinet  elib; Math. Notes, 99:2 (2016), 304–307  isi  scopus
2014
6. Sh. M. Nasibov, “Mixed Problem for a Cubic Schrödinger Evolution Equation with a Cubic Dissipative Term”, Mat. Zametki, 96:4 (2014),  539–547  mathnet  mathscinet  zmath  elib; Math. Notes, 96:4 (2014), 514–521  isi  scopus
2011
7. Sh. M. Nasibov, “On the Self-Trapping of the Solutions of Nonlinear Schrödinger Evolution Equation”, Mat. Zametki, 90:5 (2011),  789–792  mathnet  mathscinet; Math. Notes, 90:5 (2011), 771–774  isi  scopus
2009
8. Sh. M. Nasibov, “A sharp constant in a Sobolev–Nirenberg inequality and its application to the Schrödinger equation”, Izv. RAN. Ser. Mat., 73:3 (2009),  127–150  mathnet  mathscinet  zmath  elib; Izv. Math., 73:3 (2009), 555–577  isi  scopus
2008
9. Sh. M. Nasibov, “On an Integral Inequality and Its Application to the Proof of the Entropy Inequality”, Mat. Zametki, 84:2 (2008),  231–237  mathnet  mathscinet; Math. Notes, 84:2 (2008), 218–223  isi  scopus
2006
10. Sh. M. Nasibov, “On an inequality of Trudinger type and its application to a nonlinear Schrödinger equation”, Mat. Zametki, 80:5 (2006),  786–789  mathnet  mathscinet  zmath  elib; Math. Notes, 80:5 (2006), 740–743  isi  scopus
2003
11. Sh. M. Nasibov, “Blow-Up of Solutions of the Mixed Problem for the Nonlinear Ginzburg–Landau–Schrödinger Evolution Equation”, Differ. Uravn., 39:8 (2003),  1087–1091  mathnet  mathscinet; Differ. Equ., 39:8 (2003), 1144–1149
1985
12. Sh. M. Nasibov, “Stability, breakdown, damping and self-channeling of solutions of a nonlinear Schrödinger equation”, Dokl. Akad. Nauk SSSR, 285:4 (1985),  807–811  mathnet  mathscinet  zmath
1980
13. Sh. M. Nasibov, “A nonlinear equation of Schrödinger type”, Differ. Uravn., 16:4 (1980),  660–670  mathnet  mathscinet  zmath
1977
14. Sh. M. Nasibov, “The numerical extraction of bounded solutions for systems of linear partial differential equations of evolution type”, Zh. Vychisl. Mat. Mat. Fiz., 17:1 (1977),  119–135  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 17:1 (1977), 111–127

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019