RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Volkov, Evgenii Alekseevich
(1926–2019)

Total publications: 132 (124)
in MathSciNet: 136 (131)
in zbMATH: 116 (114)
in Web of Science: 26 (23)
in Scopus: 40 (40)
Cited articles: 84
Citations in Math-Net.Ru: 262
Citations in MathSciNet: 142
Citations in Web of Science: 82
Citations in Scopus: 101
Presentations: 3

Number of views:
This page:3197
Abstract pages:17185
Full texts:4957
References:834
Professor
Doctor of physico-mathematical sciences
Birth date: 4.04.1926

http://www.mathnet.ru/eng/person18892
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:volkov.e-a
https://mathscinet.ams.org/mathscinet/MRAuthorID/214701
http://elibrary.ru/author_items.asp?authorid=2655

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2016
1. E. A. Volkov, A. A. Dosiyev, “On the numerical solution of a multilevel nonlocal problem”, Mediterr. J. Math., 13:5 (2016), 3589–3604  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus (cited: 3)

   2013
2. E. A. Volkov, “Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle”, Comput. Math. Math. Phys., 53:8 (2013), 1128–1138  mathnet  crossref  crossref  mathscinet  isi (cited: 3)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 3)
3. E. A. Volkov, “Solvability analysis of a nonlocal boundary value problem by applying the contraction mapping principle”, Comput. Math. Math. Phys., 53:10 (2013), 1494–1498  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib  elib  scopus (cited: 2)
4. E. A. Volkov, A. A. Dosiyev, S. C. Buranay, “On the solution of a nonlocal problem”, Comput. Math. Appl., 66:3 (2013), 330–338  mathnet  crossref  mathscinet  zmath  isi (cited: 15)  elib (cited: 5)  scopus (cited: 14)
5. O. V. Besov, S. V. Bochkarev, E. A. Volkov, V. A. Il'in, B. S. Kashin, V. V. Kozlov, S. V. Konyagin, N. N. Kudryavtsev, Yu. S. Osipov, S. I. Pokhozhaev, V. A. Sadovnichii, A. G. Sergeev, S. A. Telyakovskii, “His mathematical century (to the memory of Sergei Mikhailovich Nikol'skii)”, Russian Math. Surveys, 68:3 (2013), 591–594  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib

   2012
6. E. A. Volkov, A. A. Dosiyev, “A highly accurate homogeneous scheme for solving the laplace equation on a rectangular parallelepiped with boundary values in $C^{k,1}$”, Comput. Math. Math. Phys., 52:6 (2012), 879–886  mathnet  crossref  mathscinet  isi (cited: 3)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 3)
7. E. A. Volkov, “About a local grid method of a solution of Laplace’s equation in the infinite rectangular cylinder”, Comput. Math. Math. Phys., 52:1 (2012), 90–97  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus

   2010
8. E. A. Volkov, “On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions”, Proc. Steklov Inst. Math., 269 (2010), 57–64  mathnet  crossref  mathscinet  zmath  zmath  isi (cited: 1)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
9. E. A. Volkov, “A modified combined grid method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Comput. Math. Math. Phys., 50:2 (2010), 274–284  mathnet  crossref  mathscinet  adsnasa  isi (cited: 3)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)
10. E. A. Volkov, “Application of a 14-point averaging operator in the grid method”, Comput. Math. Math. Phys., 50:12 (2010), 2023–2032  mathnet  crossref  adsnasa  isi (cited: 5)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 5)
11. Yu. S. Osipov, V. V. Kozlov, L. D. Faddeev, D. V. Anosov, V. S. Vladimirov, R. V. Gamkrelidze, A. A. Gonchar, N. N. Krasovskii, A. V. Kryazhimskii, A. B. Kurzhanskii, S. P. Novikov, S. M. Aseev, A. B. Zhizhchenko, D. V. Treschev, A. A. Agrachev, E. A. Volkov, N. L. Grigorenko, A. A. Davydov, M. I. Zelikin, A. Yu. Kolesov, A. A. Mal'tsev, M. S. Nikol'skii, N. Kh. Rozov, A. G. Sergeev, K. O. Besov, S. P. Konovalov, “In memory of Evgenii Frolovich Mishchenko”, Proc. Steklov Inst. Math., 271 (2010), 1–2  mathnet  crossref  mathscinet  isi  elib

   2009
12. E. A. Volkov, “A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Comput. Math. Math. Phys., 49:3 (2009), 496–501  mathnet  crossref  mathscinet  isi (cited: 6)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 5)

   2007
13. E. A. Volkov, “On a combined grid method for solving the Dirichlet problem for the Laplace equation in a rectangular parallelepiped”, Comput. Math. Math. Phys., 47:4 (2007), 638–643  mathnet  crossref  mathscinet  zmath  elib (cited: 1)  elib (cited: 1)  scopus (cited: 1)
14. E. A. Volkov, A. A. Dosiyev, “A high accurate composite grid method for solving Laplace's boundary value problems with singularities”, Russian J. Numer. Anal. Math. Modelling, 22:3 (2007), 291–307  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 5)  scopus (cited: 7)

   2006
15. E. A. Volkov, “Grid Approximation of the First Derivatives of the Solution to the Dirichlet Problem for the Laplace Equation on a Polygon”, Proc. Steklov Inst. Math., 255 (2006), 92–107  mathnet  crossref  mathscinet  elib (cited: 3)  scopus (cited: 5)

   2005
16. E. A. Volkov, “On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped”, Comput. Math. Math. Phys., 45:9 (2005), 1531–1537  mathnet  mathscinet  zmath  elib (cited: 1)  elib (cited: 1)  scopus (cited: 3)
17. E. A. Volkov, “A Block Method for Solving the Laplace Equation in a Disk with a Hole That Has Cuts”, Proc. Steklov Inst. Math., 248 (2005), 81–88  mathnet  mathscinet  zmath

   2004
18. E. A. Volkov, A. A. Dosiev, M. Bozer, “A high-accuracy composite grid method”, Dokl. Math., 69:3 (2004), 391–393  mathnet  mathscinet  zmath  isi (cited: 1)
19. E. A. Volkov, “On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped”, Russian J. Numer. Anal. Math. Modelling, 19:3 (2004), 269–278  crossref  mathscinet  zmath  isi (cited: 10)  elib (cited: 7)  scopus (cited: 11)

   2003
20. E. A. Volkov, A. K. Kornoukhov, “On solving the Motz problem by a block method”, Comput. Math. Math. Phys., 43:9 (2003), 1331–1337  mathnet  mathscinet  zmath  elib (cited: 3)  elib (cited: 3)  scopus (cited: 5)
21. E. A. Volkov, “A Method of Composite Grids on a Prism with an Arbitrary Polygonal Base”, Proc. Steklov Inst. Math., 243 (2003), 131–153  mathnet  mathscinet  zmath

   2002
22. E. A. Volkov, A. K. Kornoukhov, “Solving the torsion problem for an $L$-section rod by the block method”, Comput. Math. Math. Phys., 42:8 (2002), 1161–1170  mathnet  mathscinet  zmath  elib (cited: 2)  scopus (cited: 2)
23. E. A. Volkov, “On upper and lower bounds of the error of the difference solution to the Dirichlet problem for the Laplace equation in a cylinder”, Russian J. Numer. Anal. Math. Modelling, 17:3 (2002), 305–317  crossref  mathscinet  zmath  isi  elib  scopus

   2001
24. E. A. Volkov, “On the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped by the grid method”, Russian J. Numer. Anal. Math. Modelling, 16:6 (2001), 519–527  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 4)  scopus (cited: 4)
25. E. A. Volkov, “Cases when the solution of the Dirichlet problem for the Laplace equation on a polygon is a polynomial”, Dokl. Math., 63:1 (2001), 82–84  mathnet  mathscinet  zmath  isi  elib  scopus
26. E. A. Volkov, “On the Solvability, in the Class of Polynomials, of the Dirichlet Problem for the Laplace Equation on an Arbitrary Polygon”, Proc. Steklov Inst. Math., 232 (2001), 96–108  mathnet  mathscinet  zmath  zmath

   2000
27. E. A. Volkov, “On the grid method for solving the Dirichlet problem for the Laplace equation in a cylinder with lateral surface of class $C_{1,1}$”, Russian J. Numer. Anal. Math. Modelling, 15:6 (2000), 521–538  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 3)  scopus (cited: 3)

   1999
28. E. A. Volkov, A. K. Kornoukhov, “An approximate conformal mapping of a trapezoid onto a rectangle and its inversion obtained by the block method”, Comput. Math. Math. Phys., 39:7 (1999), 1100–1108  mathnet  mathscinet  zmath  elib (cited: 3)  scopus (cited: 3)
29. E. A. Volkov, “Conditions representation of solutions of boundary value problems for the Laplace and Poisson equations on some triangles and a rectangle by algebraic polynomials”, Dokl. Math., 59:3 (1999), 464–466  mathnet  mathscinet  zmath  elib  scopus
30. E. A. Volkov, “On convergence in $C_2$ of a difference solution of the Laplace equation on a rectangle”, Russian J. Numer. Anal. Math. Modelling, 14:3 (1999), 291–298  crossref  mathscinet  zmath  isi (cited: 10)  elib (cited: 5)  scopus (cited: 10)
31. E. A. Volkov, “On a property of solutions to the Poisson equation on polygons”, Math. Notes, 66:2 (1999), 139–141  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib  scopus
32. E. A. Volkov, “Criterion of Solvability for Boundary Value Problems for the Laplace and Poisson Equations on Special Triangles and a Rectangle in Algebraic Polynomials”, Proc. Steklov Inst. Math., 227 (1999), 116–130  mathnet  mathscinet  zmath

   1998
33. E. A. Volkov, A. K. Kornoukhov, E. A. Yakovleva, “Experimental investigation of the block method for the Laplace equation on polygons”, Comput. Math. Math. Phys., 38:9 (1998), 1481–1489  mathnet  mathscinet  zmath

   1997
34. E. A. Volkov, “On the Use of the Block Method for an Approximate Conformal Mapping of a Polygon onto a Rectangle”, Proc. Steklov Inst. Math., 219 (1997), 108–117  mathnet  mathscinet  zmath

   1996
35. E. A. Volkov, “On approximate conformal mapping of a doubly connected polygon onto a annulus by the block method”, Proc. Steklov Inst. Math., 214 (1996), 138–156  mathnet  mathscinet  zmath
36. E. A. Volkov, “On the solution of a modified Dirichlet problem on a multiconnected polygon by the rapid block method”, Proc. Steklov Inst. Math., 214 (1996), 128–137  mathnet  mathscinet  zmath

   1995
37. E. A. Volkov, “A fast block method for solving the Laplace equation on polygons with nonlocal boundary conditions”, Dokl. Math., 51:3 (1995), 314–317  mathnet  mathscinet  zmath
38. E. A. Volkov, “The fast block method for solving the Laplace equation on polygons under piecewise constant boundary conditions”, Proc. Steklov Inst. Math., 210 (1995), 66–73  mathnet  mathscinet  zmath
39. O. V. Besov, S. V. Bochkarev, V. S. Vladimirov, E. A. Volkov, V. K. Dzyadyk, V. A. Il'in, B. S. Kashin, N. P. Korneichuk, L. D. Kudryavtsev, O. A. Oleinik, Yu. S. Osipov, S. I. Pokhozhaev, S. B. Stechkin, S. A. Telyakovskii, V. N. Temlyakov, P. L. Ul'yanov, “Sergei Mikhailovich Nikol'skii (on his ninetieth birthday)”, Russian Math. Surveys, 50:6 (1995), 1321–1327  mathnet  crossref  mathscinet  adsnasa  isi

   1994
40. E. A. Volkov, Block method for solving the Laplace equation and for constructing conformal mappings, CRC Press, Boca Raton, FL, 1994 , x+227 pp.  mathscinet  zmath
41. E. A. Volkov, “On solution of the Laplace equation by the block method on polygons under piecewise constant boundary conditions”, Russian Acad. Sci. Dokl. Math., 49:2 (1994), 375–379  mathnet  mathscinet  zmath

   1992
42. E. A. Volkov, “Rapid block method for constructing Green's function of Laplace's operator on polygons”, Differ. Equations, 28:7 (1992), 952–960  mathnet  mathscinet  zmath  isi

   1994
43. E. A. Volkov, “Approximate solution, by the block method, of the Laplace equation on polygons with analytic mixed boundary conditions”, Proc. Steklov Inst. Math., 201 (1994), 137–153  mathnet  mathscinet  zmath

   1993
44. E. A. Volkov, “Approximate solution of Laplace's equation by the block method on polygons under nonanalytic boundary conditions”, Proc. Steklov Inst. Math., 194 (1993), 65–90  mathnet  mathscinet  zmath

   1994
45. O. V. Besov, E. A. Volkov, V. K. Dzyadyk, N. P. Korneichuk, L. D. Kudryavtsev, P. I. Lizorkin, “Sergei Mikhailovich Nikol'skii (On occasion of eighty fifth birthday)”, Proc. Steklov Inst. Math., 201 (1994), 1–9  mathnet  mathscinet  zmath

   1992
46. E. A. Volkov, “On a fast method of computing the Green function of the Laplace operator on polygons”, Sov. Math. Dokl., 44:3 (1992), 854–857  mathnet  mathscinet  zmath

   1993
47. E. A. Volkov, “Approximate conformal mapping of domains with periodical structure by the block method”, Proc. Steklov Inst. Math., 200 (1993), 111–124  mathnet  mathscinet  zmath

   1990
48. E. A. Volkov, Métodos numéricos, Mir, Moscow, 1990 , 255 pp. (na ispanskom yazyke)  mathscinet  zmath

   1992
49. E. A. Volkov, “Approximate conformal mapping of the exterior of a lattice of ellipses onto the exterior of a lattice of segments by the block method”, Proc. Steklov Inst. Math., 192 (1992), 35–42  mathnet  mathscinet  zmath

   1989
50. E. A. Volkov, “An approximate conformal mapping of the exterior of a parabola with a hole onto a ring”, Ukrainian Math. J., 41:4 (1989), 415–418  crossref  mathscinet  zmath  zmath  scopus

   1990
51. E. A. Volkov, “Development of block method of solution of Laplace equation for finite and nonfinite circular polygones”, Proc. Steklov Inst. Math., 187 (1990), 45–78  mathnet  mathscinet  zmath

   1989
52. E. A. Volkov, Numerical methods, Hemisphere Publ. Corp., New York, 1989 , 238 pp.

   1988
53. E. A. Volkov, “Approximate conformal mapping of a disk with a polygonal hole onto a ring by the block method”, U.S.S.R. Comput. Math. Math. Phys., 28:3 (1988), 143–147  mathnet  crossref  mathscinet  zmath  isi  scopus

   1989
54. E. A. Volkov, “Highly-precision practical results in conformal mappings of simply connected and doubly connected domains by the block method”, Proc. Steklov Inst. Math., 181 (1989), 43–73  mathnet  mathscinet  zmath

   1987
55. E. A. Volkov, “Approximate conformal mapping by a block method of a square frame onto an annulus”, Investigations in the theory of the approximation of functions, Akad. Nauk SSSR Bashkir. Filial, Otdel Fiz. Mat., Ufa, 1987, 85–96  mathscinet
56. E. A. Volkov, “Approximate conformal mapping of certain polygons onto a strip by the block method”, U.S.S.R. Comput. Math. Math. Phys., 27:4 (1987), 136–142  mathnet  crossref  mathscinet  zmath  isi  scopus

   1989
57. E. A. Volkov, “A development of the method of quadratures for the Laplace equation and conformal mappings”, Proc. Steklov Inst. Math., 180 (1989), 94–96  mathnet  zmath

   1987
58. E. A. Volkov, “An asymptotically fast approximate method of finding a solution of the difference Laplace equation on mesh segments”, Proc. Steklov Inst. Math., 173 (1987), 71–92  mathnet  mathscinet  zmath
59. E. A. Volkov, “An approximate method of conformal mapping of multiply connected polygons onto canonical domains”, Proc. Steklov Inst. Math., 173 (1987), 57–69  mathnet  mathscinet  zmath
60. E. A. Volkov, “An exponentially converging method for the Neumann problem on multiply connected polygons”, Proc. Steklov Inst. Math., 172 (1987), 97–118  mathnet  mathscinet  zmath

   1985
61. E. A. Volkov, “On methods of solving difference equations for a piecewise homogeneous medium, and with right side given along a curve”, Sov. Math. Dokl., 32 (1985), 63–66  mathnet  mathscinet  zmath

   1984
62. E. A. Volkov, “On an asymptotically fast approximate method of obtaining a solution of the Laplace difference equation on mesh segments”, Sov. Math. Dokl., 30 (1984), 642–646  mathnet  mathscinet  zmath

   1985
63. E. A. Volkov, “An economical composite difference method for the Dirichlet problem in a piecewise-homogeneous medium”, Proc. Steklov Inst. Math., 163 (1985), 61–87  mathnet  mathscinet  zmath

   1986
64. E. A. Volkov, Numerical methods, Mir, Moscow, 1986 , 238 pp.  mathscinet

   1983
65. E. A. Volkov, “An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions”, Proc. Steklov Inst. Math., 156 (1983), 31–49  mathnet  mathscinet  zmath

   1979
66. E. A. Volkov, “An exponentially converging method of conformal mapping of polygonal regions”, Sov. Math. Dokl., 20 (1979), 1404–1407  mathnet  mathscinet  mathscinet  zmath
67. E. A. Volkov, “On an efficient method of cubic meshes for solving Laplace's equation on a parallelepiped with discontinuous boundary conditions”, Sov. Math. Dokl., 20 (1979), 1142–1146  mathnet  mathscinet  mathscinet  zmath

   1980
68. E. A. Volkov, “An exponentially convergent method for the solution of Laplace's equation on polygons”, Math. USSR-Sb., 37:3 (1980), 295–325  mathnet  crossref  mathscinet  zmath  isi (cited: 10)

   1981
69. E. A. Volkov, “On the smoothness of solutions of the Dirichlet problem, and the composite mesh method on polyhedra”, Proc. Steklov Inst. Math., 150 (1981), 71–103  mathnet  mathscinet  zmath

   1978
70. E. A. Volkov, “On the solution of Laplace's equation on a parallelepiped with discontinuous boundary conditions by methods of uniform and composite grids”, Sov. Math. Dokl., 19 (1978), 451–454  mathnet  mathscinet  mathscinet  zmath
71. E. A. Volkov, “A rapidly converging method of quadratures for solving Laplace's equation on polygons”, Sov. Math. Dokl., 19 (1978), 154–157  mathnet  mathscinet  mathscinet  zmath

   1977
72. E. A. Volkov, “A difference-analytic method of calculating the potential field on polygons”, Sov. Math. Dokl., 18 (1977), 1531–1535 (1978)  mathnet  mathscinet  mathscinet  zmath

   1979
73. E. A. Volkov, “On the search of solutions of a nonlinear integral equation”, Proc. Steklov Inst. Math., 142 (1979), 107–128  mathnet  mathscinet  zmath
74. E. A. Volkov, “The method of composite regular nets for the Laplace equation on polygons”, Proc. Steklov Inst. Math., 140 (1979), 71–109  mathnet  mathscinet  zmath
75. E. A. Volkov, “On the investigation and solution by a difference method of nonlinear problems for an ordinary differential equation”, Proc. Steklov Inst. Math., 140 (1979), 111–139  mathnet  mathscinet  zmath

   1977
76. E. A. Volkov, “An a posteriori error estimate of difference solutions of the Laplace and Poisson equations”, Proc. Steklov Inst. Math., 134 (1977), 55–73  mathnet  mathscinet  zmath

   1974
77. E. A. Volkov, “Asymptotic properties of an a posteriori estimate of the error in difference solutions of ordinary differential equations”, Differ. Equations, 10:12 (1974), 1750–1754 (1976)  mathnet  mathscinet  zmath  zmath
78. E. A. Volkov, “On the search for the maximum of a function and on the approximate global solution of a system of nonlinear equations”, Proc. Steklov Inst. Math., 131 (1974), 67–83  mathnet  mathscinet  zmath

   1973
79. E. A. Volkov, “On two-sided difference methods for ordinary differential equations”, Proceedings of Equadiff III, Third Czechoslovak Conf. on Differential Equations and their Applications (Brno, 1972), Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis, Ser. Monograph., 1, Purkyně Univ., Brno, 1973, 81–87  mathscinet
80. E. A. Volkov, “Pointwise estimates of the accuracy of a difference solution of a boundary-value problem for an ordinary differential equation”, Differ. Equations, 9:4 (1973), 545–552 (1975)  mathnet  mathscinet  zmath

   1972
81. E. A. Volkov, “The approximate solution of the Laplace and Poisson equations in weighted Hölder spaces”, Application of functional methods to the boundary value problems of mathematical physics, Proc. Third Soviet-Czechoslovak Conf. (Novosibirsk, 1971), Inst. Mat. Akad. Nauk SSSR Sibirsk. Otdel., Novosibirsk, 1972, 32–39  mathscinet
82. E. A. Volkov, “Boundaries of subdomains, Hölder weight classes and solutions in these classes of the Poisson equation”, Proc. Steklov Inst. Math., 117 (1972), 89–117  mathnet  mathscinet  zmath
83. E. A. Volkov, “Weighted error estimates for the mesh method of solving the Laplace and Poisson equations”, Proc. Steklov Inst. Math., 117 (1972), 119–134  mathnet  mathscinet  zmath
84. E. A. Volkov, “Approximate solution of the Laplace and Poisson equations in weighted Hölder spaces”, Proc. Steklov Inst. Math., 128 (1972), 85–129  mathnet  mathscinet  zmath
85. E. A. Volkov, “Two-sided difference methods for solving linear boundary-value problems for ordinary differential equations”, Proc. Steklov Inst. Math., 128 (1972), 131–152  mathnet  mathscinet  zmath
86. E. A. Volkov, “A bilateral difference method for nonlinear and spectral problems in ordinary differential equations”, Sov. Math. Dokl., 13 (1972), 1099–1102  mathnet  mathscinet  mathscinet  zmath
87. E. A. Volkov, “Bilateral difference method for solving the boundary value problem for an ordinary differential equation”, Math. Notes, 11:4 (1972), 257–262  mathnet  crossref  mathscinet  zmath  adsnasa  elib  scopus
88. “Correction to: “A posteriori and weighted error estimates for solutions of the Poisson equation, and their derivatives, as calculated by the method of nets””, Sov. Math. Dokl., 13:5 (1972), iv  mathscinet
89. E. A. Volkov, Dokl. Akad. Nauk SSSR, 206:6 (1972), 776  mathnet

   1971
90. E. A. Volkov, “Effective error estimates for difference solutions of boundary value problems in ordinary differential equations”, Proc. Steklov Inst. Math., 112 (1971), 143–155  mathnet  mathscinet  zmath
91. E. A. Volkov, “The method of regular composite nets in solving the mixed boundary value problem for the Laplace equation”, Sov. Math. Dokl., 12 (1971), 84–88  mathnet  mathscinet  mathscinet  zmath
92. E. A. Volkov, “A difference method of estimating errors in numerical solutions of boundary value problems for an ordinary differential equation”, Sov. Math. Dokl., 12 (1971), 530–534  mathnet  mathscinet  mathscinet  zmath

   1970
93. E. A. Volkov, “A posteriori and weighted error estimates for solutions of Poisson's equation and their derivatives computed by the net method”, Sov. Math. Dokl., 11 (1970), 699–703  mathnet  mathscinet  mathscinet  zmath

   1969
94. E. A. Volkov, “On differential properties of solutions of the Laplace and Poisson equations on a parellelepiped and efficient error estimates of the method of nets”, Proc. Steklov Inst. Math., 105 (1969), 54–78  mathnet  mathscinet  zmath
95. E. A. Volkov, “The differential properties of the solutions of Laplace's equation, and the errors in the method of nets with boundary values in $C_{2}$ and $C_{1,1}$”, U.S.S.R. Comput. Math. Math. Phys., 9:3 (1969), 97–112  mathnet  crossref  mathscinet  zmath  scopus (cited: 6)
96. E. A. Volkov, “Solving the Dirichlet problem for Laplace's equation for domains with curved corners by the method of nets”, Differ. Equations, 5:1 (1969), 122–131 (1972)  mathnet  mathscinet  zmath  zmath
97. E. A. Volkov, “On the conditions that the net method for the Laplace equation converges with speed $h^2$”, Math. Notes, 6:6 (1969), 866–872  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

   1968
98. E. A. Volkov, “The unimprovability of the error estimate of the method of refinements with higher order differences in a certain class of solutions of Poisson's equation”, Differ. Equations, 4:1 (1968), 70–71  mathnet  mathscinet  zmath
99. E. A. Volkov, “On the inevitable error of the method of nets”, Math. Notes, 4:6 (1968), 865–868  mathnet  crossref  mathscinet  zmath  scopus
100. E. A. Volkov, “A mesh method for finite and infinite polygons and error bounds in terms of known quantities”, Proc. Steklov Inst. Math., 96 (1968), 187–234  mathnet  mathscinet  zmath
101. E. A. Volkov, “The method of composite meshes for finite and infinite regions with piecewise smooth boundary”, Proc. Steklov Inst. Math., 96 (1968), 145–185  mathnet  mathscinet  zmath

   1967
102. E. A. Volkov, “Remark on the approximation of functions by polynomials”, U.S.S.R. Comput. Math. Math. Phys., 7:6 (1967), 212–214  mathnet  crossref  mathscinet  zmath  scopus
103. E. A. Volkov, “The development of a grid method for the solution of Laplace's equation in finite or infinite regions with piecewise-smooth boundaries”, Math. Notes, 2:4 (1967), 747–755  mathnet  crossref  scopus

   1966
104. E. A. Volkov, “Methods of obtaining estimates for the error of the numerical solution of the Dirichlet problem in terms of known quantites”, Zh. Vychisl. Mat. Mat. Fiz., 6:supplement to № 4 (1966), 5–17  mathnet  mathscinet  zmath
105. E. A. Volkov, “The network method for the external Dirichlet problem”, U.S.S.R. Comput. Math. Math. Phys., 6:3 (1966), 126–138  mathnet  crossref  mathscinet  zmath  scopus
106. E. A. Volkov, “The net-method for finite and infinite regions with piecewise smooth boundary”, Sov. Math. Dokl., 7 (1966), 744–747  mathnet  mathscinet  mathscinet  zmath
107. E. A. Volkov, “Effective estimates of the errors in solutions by the method of nets of boundary problems for the Laplace and Poisson equations on a rectangle and on certain triangles”, Proc. Steklov Inst. Math., 74 (1966), 57–90  mathnet  mathscinet  zmath
108. E. A. Volkov, “The method of irregular nets for finite and infinite regions with conical points”, Differ. Equations, 2:10 (1966), 702–709  mathnet  mathscinet  zmath
109. E. A. Volkov, “The method of composite meshes”, International Mathematical Congress. Theses of brief scientific announcements. Section 14, 1966, 28–29
110. E. A. Volkov, “Introductory numerical analysis of elliptic boundary value problems: Greenspan, D. New York–Evanston–London, Harper and Row Publs., 1965, IX+164 pp”, U.S.S.R. Comput. Math. Math. Phys., 6:1 (1966), 269–272  mathnet  crossref

   1965
111. E. A. Volkov, “Solution of the Dirichlet problem by the method of refining with higher-order differences”, Sov. Math. Dokl., 6 (1965), 1234–1237  mathnet  mathscinet  mathscinet  zmath
112. E. A. Volkov, “Solution of the Dirichlet problem using higher-order differences. I”, Differ. Equations, 1 (1965), 733–745  mathnet  mathscinet  mathscinet  zmath  zmath
113. E. A. Volkov, “Solution of the Dirichlet problem using higher-order differences. II”, Differ. Equations, 1 (1965), 835–846  mathnet  mathscinet  zmath
114. E. A. Volkov, “The lack of basis for Batschelet's majorant method and an estimate of the error in the solution of the mixed boundary value problem by the mesh method”, U.S.S.R. Comput. Math. Math. Phys., 5:1 (1965), 167–172  mathnet  crossref  mathscinet  zmath  scopus
115. E. A. Volkov, “Differentiability properties of solutions of boundary value problems for the Laplace equation on a polygon”, Proc. Steklov Inst. Math., 77 (1965), 127–159  mathnet  mathscinet  zmath
116. E. A. Volkov, “Differentiability properties of solutions of boundary value problems for the Laplace and Poisson equations on a rectangle”, Proc. Steklov Inst. Math., 77 (1965), 101–126  mathnet  mathscinet  zmath

   1964
117. E. A. Volkov, “Application of the Lagrange interpolation polynomial for solving the Dirichlet problem for the Poisson equation by the method of nets”, U.S.S.R. Comput. Math. Math. Phys., 4:3 (1964), 93–103  mathnet  crossref  mathscinet  zmath  scopus
118. E. A. Volkov, “Effective error estimates for net method solutions of the Dirichlet problem for Laplace's equation on polygons”, Sov. Math. Dokl., 5 (1964), 483–487  mathnet  mathscinet  mathscinet  zmath

   1963
119. E. A. Volkov, “The removal of singularities in the solution of boundary problems for the Laplace equation in a region with a smooth boundary”, U.S.S.R. Comput. Math. Math. Phys., 3:1 (1963), 139–152  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)
120. E. A. Volkov, “Methods of refinement using higher-order differences and $h^2$-extrapolation”, Sov. Math. Dokl., 4 (1963), 671–674  mathnet  mathscinet  mathscinet  zmath
121. E. A. Volkov, Dokl. Akad. Nauk SSSR, 151:6 (1963), 1246  mathnet

   1962
122. E. A. Volkov, “Solutions of boundary value problems for Poisson's equation in a rectangle”, Sov. Math. Dokl., 3 (1962), 1524–1528  mathnet  mathscinet  mathscinet  zmath
123. E. A. Volkov, “On the method of nets for a boundary problem with an oblique and a normal derivative”, U.S.S.R. Comput. Math. Math. Phys., 1:3 (1962), 705–722  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)
124. E. A. Volkov, “A method for computing uniform approximations to functions”, U.S.S.R. Comput. Math. Math. Phys., 1:2 (1962), 358–361  mathnet  crossref  zmath  scopus

   1963
125. E. A. Volkov, “On the solution by the grid method of the inter Dirichlet problem for the Laplace equation”, Amer. Math. Soc. Transl. (2), 24 (1963), 279–307  mathscinet  zmath

   1964
126. E. A. Volkov, “A method for improving the accuracy of grid solutions of the Poisson equation”, Amer. Math. Soc. Transl. (2), 35 (1964), 117–136  mathscinet  zmath

   1957
127. E. A. Volkov, Novye formuly dlya vychisleniya elementarnykh funktsii na BESM, In-t tochnoi mekhaniki i vychislit. tekhniki AN SSSR, M., 1957 , 15 pp.

   1955
128. E. A. Volkov, “On numerical solution of the problem of Lavrent'ev-Bicadze”, Dokl. Akad. Nauk SSSR (N.S.), 103:5 (1955), 755–758  mathscinet  zmath
129. E. A. Volkov, “On a solution by the method of grids of equations of elliptic type with boundary conditions containing derivatives”, Dokl. Akad. Nauk SSSR (N.S.), 102:3 (1955), 437–440  mathscinet  zmath

   1954
130. E. A. Volkov, “Estimates of the error in the solution by the method of grids of Dirichlet's problem for the Laplace equation”, Dokl. Akad. Nauk SSSR (N.S.), 96:5 (1954), 897–899  mathscinet  zmath
131. E. A. Volkov, “On a method of increasing the accuracy of the method of grids”, Dokl. Akad. Nauk SSSR (N.S.), 96:4 (1954), 685–688  mathscinet  zmath

   1950
132. E. A. Volkov, “A mechanical apparatus for the solution of Poisson's equation and certain other equations of elliptic type”, Vestnik Moskov. Univ. Ser. Fiz.-Mat. Estest. Nauk, 1950, no. 10, 3–17  mathscinet

Presentations in Math-Net.Ru
1. О нелокальной краевой задаче для уравнения Лапласа на прямоугольном параллелепипеде
E. A. Volkov
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 27, 2015 14:30
2. Решение методом сеток нелокальной краевой задачи для уравнений Лапласа и Пуассона
E. A. Volkov
Seminar on Theory of Functions of Several Real Variables and Its Applications to Problems of Mathematical Physics
March 20, 2013 16:00
3. О нелокальной краевой задаче для оператора Пуассона (вопросы существования решения и приближенного решения)
E. A. Volkov
Seminar on Theory of Functions of Several Real Variables and Its Applications to Problems of Mathematical Physics
February 27, 2013

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019