RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Kan Igor' Davidovich

Statistics Math-Net.Ru
Total publications: 14
Scientific articles: 14
Presentations: 4

Number of views:
This page:817
Abstract pages:2361
Full texts:573
References:286
E-mail:

http://www.mathnet.ru/eng/person18898
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=316098

Publications in Math-Net.Ru
1. Linear Congruences in Continued Fractions on Finite Alphabets
I. D. Kan
Mat. Zametki, 103:6 (2018),  853–862
2. A strengthening of a theorem of Bourgain and Kontorovich. V
I. D. Kan
Tr. Mat. Inst. Steklova, 296 (2017),  133–139
3. A strengthening of a theorem of Bourgain and Kontorovich. IV
I. D. Kan
Izv. RAN. Ser. Mat., 80:6 (2016),  103–126
4. Inversion of the Cauchy–Bunyakovskii–Schwarz Inequality
I. D. Kan
Mat. Zametki, 99:3 (2016),  361–365
5. A strengthening of a theorem of Bourgain and Kontorovich. III
I. D. Kan
Izv. RAN. Ser. Mat., 79:2 (2015),  77–100
6. A strengthening of a theorem of Bourgain and Kontorovich
I. D. Kan, D. A. Frolenkov
Izv. RAN. Ser. Mat., 78:2 (2014),  87–144
7. A strengthening of a theorem of Bourgain–Kontorovich II
D. A. Frolenkov, I. D. Kan
Moscow J. Combin. Number Theory, 4:1 (2014),  78–117
8. Quantitative generalizations of Niederreiter's results on continued fractions
I. D. Kan, N. A. Krotkova
Chebyshevskii Sb., 12:1 (2011),  100–119
9. Methods for estimating of continuants
I. D. Kan
Fundam. Prikl. Mat., 16:6 (2010),  95–108
10. The Frobenius Problem for Classes of Polynomial Solvability
I. D. Kan
Mat. Zametki, 70:6 (2001),  845–853
11. Refining of the comparison rule for continuants
I. D. Kan
Diskr. Mat., 12:3 (2000),  72–75
12. Representation of numbers by linear forms
I. D. Kan
Mat. Zametki, 68:2 (2000),  210–216
13. On a problem of Frobenius
I. D. Kan
Fundam. Prikl. Mat., 3:3 (1997),  821–835
14. Frobenius problem for three arguments
I. D. Kan, B. S. Stechkin, I. V. Sharkov
Mat. Zametki, 62:4 (1997),  626–629
15. Möbius functions of the union of partial orders
I. D. Kan
Diskr. Mat., 3:2 (1991),  121–127

Presentations in Math-Net.Ru
1. Задачи теории чисел, связанные с цепными дробями или континуантами II
I. D. Kan
Contemporary Problems in Number Theory
October 12, 2017 12:45
2. Задачи теории чисел, связанные с цепными дробями или континуантами
I. D. Kan
Contemporary Problems in Number Theory
October 5, 2017 12:45
3. Дальнейшие продвижения в проблеме Зарембы II.
I. D. Kan
Contemporary Problems in Number Theory
October 6, 2016 12:45
4. Дальнейшие продвижения в проблеме Зарембы
I. D. Kan
Contemporary Problems in Number Theory
September 29, 2016 12:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018