RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Kritskov, Leonid Vladimirovich

Total publications: 41 (39)
in MathSciNet: 20 (20)
in zbMATH: 6 (6)
in Web of Science: 8 (8)
in Scopus: 7 (7)
Cited articles: 11
Citations in Math-Net.Ru: 11
Citations in Scopus: 16

Number of views:
This page:678
Abstract pages:1914
Full texts:844
References:50
Associate professor
Candidate of physico-mathematical sciences (1990)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 19.10.1965
E-mail:
Keywords: Ordinary differential operators, Schrödinger operator, convergence of spectral expansions, eigen and associated functions, basis properties, boundary control, differential operators with involution

Subject:

Spectral theory of differential operators, boundary control theory

   
Main publications:
  1. V. A. Il'in, L. V. Kritskov, “Properties of spectral expansions corresponding to non-self-adjoint differential operators”, Journal of Mathematical Sciences, 116:5 (2003), 3489–3550
  2. L. V. Kritskov, “O zadachakh granichnogo upravleniya dlya uravneniya Kleina-Gordona-Foka s summiruemym koeffitsientom”, Differentsialnye uravneniya, 51:5 (2015), 688–696
  3. L. V. Kritskov, “Ravnomernaya na vsei pryamoi skhodimost spektralnogo razlozheniya dlya operatora Shredingera s potentsialom-raspredeleniem”, Differentsialnye uravneniya, 53:2 (2017), 183–194
  4. L. V. Kritskov, “Otsenka prirascheniya spektralnoi funktsii operatora Shredingera s potentsialom, udovletvoryayuschim usloviyu tipa Kato”, Differentsialnye uravneniya, 35:8 (1999), 1077–1086
  5. L. V. Kritskov, A. M. Sarsenbi, “Bazisnost Rissa sistemy kornevykh funktsii differentsialnogo operatora vtorogo poryadka s involyutsiei”, Differentsialnye uravneniya, 53:1 (2017), 35–48

http://www.mathnet.ru/eng/person19259
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/261399
http://elibrary.ru/author_items.asp?authorid=261399
ISTINA http://istina.msu.ru/workers/1276827
http://orcid.org/0000-0002-3378-7407
http://www.researcherid.com/rid/N-7251-2017

Full list of scientific publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2018
1. L. V. Kritskov, D. Yu. Borodinova, “Estimates of the root functions of a one-dimensional Schrödinger operator with a strong boundary singularity”, Differential Equations, 54:5 (2018), 567–577  crossref  crossref  isi  scopus
2. L. V. Kritskov, A. M. Sarsenbi, “Equiconvergence property for spectral expansions related to perturbations of the operator $-u(-x)$ with initial data”, Filomat, 32:3 (2018), 1069–1078 (to appear)  crossref  isi  scopus
3. L. V. Kritskov, “Bessel property of the system of root functions of a second-order singular operator on an interval”, Differential Equations, 54:8 (2018), 1032–1048  crossref  crossref  isi  scopus
4. L. V. Kritskov, M. A. Sadybekov, A. M. Sarsenbi, “Nonlocal spectral problem for a second-order differential operator with an involution”, Bulletin of the Karaganda University - Mathematics, 2018, no. 3 (91), 53–60 http://mathematics-vestnik.ksu.kz/apart/2018-91-3/6.pdf  crossref  isi

   2017
5. L. V. Kritskov, “Classes of uniform convergence of spectral expansions for the one-dimensional Schrödinger operator with a distribution potential”, Differential Equations, 53:5 (2017), 583–594  crossref  crossref  isi  elib  scopus (cited: 1)
6. L. V. Kritskov, “Uniform, on the entire axis, convergence of the spectral expansion for Schrödinger operator with a potential-distribution”, Differential Equations, 53:2 (2017), 180–191  crossref  crossref  isi  elib  scopus (cited: 3)
7. L. V. Kritskov, A. M. Sarsenbi, “Riesz basis property of system of root functions of second-order differential operator with involution”, Differential Equations, 53:1 (2017), 33–46  crossref  crossref  isi  elib  scopus (cited: 12)
8. L. V. Kritskov, “Estimates for Root Functions of a Singular Second-Order Differential Operator”, Functional Analysis in Interdisciplinary Applications. FAIA 2017., Springer Proceedings in Mathematics & Statistics, 216, eds. T. S. Kalmenov , E. D. Nursultanov, M. V. Ruzhansky, M. A. Sadybekov, Springer, Cham, 2017, 245–257  crossref  scopus
9. D. V. Goryashin, A. S. Zelenskii, A. I. Kozko, L. V. Kritskov, V. S. Panferov, A. G. Razborov, I. N. Sergeev, I. A. Sheipak, M. V. Yumashev, Kvant, 2017, no. 9, 53–55  mathnet
10. D. V. Goryashin, A. S. Zelenskii, A. I. Kozko, L. V. Kritskov, V. S. Panferov, A. G. Razborov, I. N. Sergeev, I. A. Sheipak, M. V. Yumashev, S. S. Chesnokov, Kvant, 2017, no. 4, 52–58  mathnet

   2015
11. L. V. Kritskov, A. M. Sarsenbi, “Basicity in $L_p$ of root functions for differential equations with involution”, Electronic Journal of Differential Equations, 2015:278 (2015) , 9 pp.
12. L. V. Kritskov, A. M. Sarsenbi, “Spectral properties of a nonlocal problem for a second-order differential equation with an involution”, Differential Equations, 51:8 (2015), 984–990  crossref  crossref
13. L. V. Kritskov, “On boundary control problems for the Klein-Gordon-Fock equation with an integrable coefficient”, Differential Equations, 51:5 (2015), 701–709  crossref  crossref
14. L. V. Kritskov, “Necessary condition for the uniform minimality of Kostyuchenko type systems”, Azerbaijan Journal of Mathematics, 5:1 (2015), 97–103

   2013
15. M. F. Abdukarimov, L. V. Kritskov, “Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: the case of control by displacements at two endpoints”, Differential Equations, 49:8 (2013), 1006–1017  crossref  crossref
16. M. F. Abdukarimov, L. V. Kritskov, “Boundary control of the displacement at one end with the other end free for a process described by the telegraph equation with a variable coefficient”, Doklady Mathematics, 87:3 (2013), 351–353  crossref  crossref
17. M. F. Abdukarimov, L. V. Kritskov, “Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient. The case of control by displacement at one endpoint with the other endpoint being fixed”, Differential Equations, 49:6 (2013), 731–743  crossref  crossref

   2003
18. V. A. Il'in, L. V. Kritskov, “Properties of spectral expansions corresponding to non-self-adjoint differential operators”, J. Math. Sci. (N. Y.), 116:5 (2003), 3489–3550  mathnet  crossref  mathscinet  zmath

   2000
19. L. V. Kritskov, “Estimates of generalized eigenfunctions of two-term differential operator of even order”, Differ. Equ., 36:10 (2000), 1443–1451  mathnet  crossref  mathscinet

   1999
20. L. V. Kritskov, “An estimate for the increment of the spectral function of the Schrödinger operator with a potential satisfying a Kato-type condition”, Differ. Equ., 35:8 (1999), 1087–1097  mathnet  mathscinet
21. L. V. Kritskov, “An estimate for Fourier images in a system of generalized eigenfunctions of the Schrödinger operator with a Stummel-type potential”, Math. Notes, 65:4 (1999), 454–461  mathnet  crossref  crossref  mathscinet  zmath  isi

   1998
22. L. V. Kritskov, “On spectral expansions corresponding to the multidimensional Schrödinger operator with summable potential. II”, Differ. Equ., 34:10 (1998), 1376–1385  mathnet  mathscinet
23. L. V. Kritskov, “On spectral expansions corresponding to the multidimensional Schrödinger operator with a summable potential. I”, Differ. Equ., 34:5 (1998), 610–620  mathnet  mathscinet

   1997
24. L. V. Kritskov, “A lower bound for the Fourier images in the system of fundamental functions of the one-dimensional Schrödinger operator with a summable potential”, Differ. Equ., 33:10 (1997), 1327–1334  mathnet  mathscinet
25. L. V. Kritskov, “On the ordered spectral representation of the space $L_2(\mathbf R)$ with respect to the Stark-effect Hamiltonian of regular type. II”, Differ. Equ., 33:3 (1997), 348–354  mathnet  mathscinet

   1996
26. L. V. Kritskov, “On the ordered spectral representation of the space $L_2(\mathbf R)$ with respect to the Stark-effect Hamiltonian of regular type. I”, Differ. Equ., 32:12 (1996), 1592–1600  mathnet  mathscinet
27. L. V. Kritskov, “On an ordered spectral representation of the space $L_2$ with respect to the Schrödinger operator with a singular matrix potential”, Differ. Equ., 32:5 (1996), 631–639  mathnet  mathscinet
28. L. V. Kritskov, “Distribution of eigenvalues for uniformly minimal systems of root functions of ordinary differential operators”, Differ. Equ., 32:1 (1996), 64–72  mathnet  mathscinet
29. V. A. Il'in, L. V. Kritskov, “An estimate, uniform on the whole line $\mathbb R$, for the rate of convergence of a spectral expansion corresponding to the Schrödinger operator with a summable potential”, Differ. Equ., 32:1 (1996), 32–37  mathnet  mathscinet
30. L. V. Kritskov, “To the problem on the basis property of the system $\{\exp(iant) \sin(nt)\}$”, Doklady Mathematics, 53:1 (1996), 33–34  mathnet

   1995
31. L. V. Kritskov, “Analytic description of an ordered spectral representation of the space $L_2(\mathbf R^N)$ with respect to a Schrödinger operator with a potential in the Kato class”, Differ. Equ., 31:12 (1995), 2008–2015  mathnet  mathscinet
32. V. A. Il'in, L. V. Kritskov, “An estimate for the spectral function of the one-dimensional Stark-effect Hamiltonian”, Differ. Equ., 31:9 (1995), 1409–1418  mathnet  mathscinet  zmath
33. V. A. Il'in, L. V. Kritskov, “An estimate that is uniform on the whole line for generalized eigenfunctions of the one-dimensional Schrödinger operator with a uniformly locally summable potential”, Differ. Equ., 31:8 (1995), 1267–1274  mathnet  mathscinet  zmath
34. L. V. Kritskov, “Boundedness of the multiplicities for the systems of generalized exponents that are uniformly minimal in $L_2$”, Doklady Mathematics, 51:2 (1995), 231–232  mathnet

   1993
35. L. V. Kritskov, “Distribution of the eigenvalues of singular differential operators on an interval”, Differ. Equ., 29:5 (1993), 660–665  mathnet  mathscinet
36. L. V. Kritskov, “Representation and estimates of root functions of singular differential operators on an interval. II”, Differ. Equ., 29:1 (1993), 54–61  mathnet  mathscinet

   1992
37. L. V. Kritskov, “Representation and estimates of root functions of singular differential operators on an interval. I”, Differ. Equ., 28:8 (1992), 1035–1045  mathnet  mathscinet

   1991
38. L. V. Kritskov, “The unconditional basis property for systems of root functions of the one-dimensional singular Schrödinger operator”, Differ. Uravn., 27:8 (1991), 1446–1447  mathnet  mathscinet  zmath

   1990
39. L. V. Kritskov, “On necessary conditions for the basis property in $L_p(G)$ of a system of root functions of the one-dimensional Schrödinger operator”, Soviet Math. Doklady, 41:2 (1990), 374–377  mathnet
40. L. V. Kritskov, Nekotorye spektralnye svoistva singulyarnykh obyknovennykh differentsialnykh operatorov vtorogo poryadka, Diss. … kand. fiz.-matem. nauk, MGU, Moskva, 1990 , 148 pp.

   1989
41. L. V. Kritskov, “A uniform estimate for the order of associated functions, and the distribution of eigenvalues of a one-dimensional Schrödinger operator”, Differ. Equ., 25:7 (1989), 784–791  mathnet  mathscinet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019