Sevryuk, Mikhail Borisovich

Statistics Math-Net.Ru
Total publications: 23
Scientific articles: 19
Presentations: 2

Number of views:
This page:1140
Abstract pages:4910
Full texts:1793
Sevryuk, Mikhail Borisovich
Doctor of physico-mathematical sciences (2003)
Speciality: 01.04.17 (Chemical physics, physics of burning and blowing, physics of extreme states of matter)
Birth date: 29.11.1962
Phone: +7 (499) 137 41 04
Fax: +7 (499) 137 82 58
Keywords: KAM theory, reversible dynamical systems.
UDC: 517.925.52, 517.938, 511.42
MSC: 37J40, 70H08, 70H33


KAM theory, theory of reversible dynamical systems.


A learner of Academician V. I. Arnold.
1979–1984: a student of the Faculty for Mechanics and Mathematics of the Moscow State University. The diploma work: "Autodual diffeomorphisms and vector fields" (the scientific advisor: V. I. Arnold).
1984–1987: a post-graduate student of the Faculty for Mechanics and Mathematics of the Moscow State University (the Department of Differential Equations).
From 1987 until now: a researcher in the Institute of Energy Problems of Chemical Physics (Moscow), the USSR (Russia since 1991) Academy of Sciences (V. L. Talroze Institute since 2012). The current position is "chief researcher".
1988: the PhD thesis "Reversible dynamical systems" (the scientific advisor: V. I. Arnold).
2003: the habilitation thesis "Dynamical analysis of atomic and molecular collisions" (the scientific consultant: L. Yu. Rusin).

Main publications:
  1. M. B. Sevryuk, Reversible Systems, Lecture Notes in Math., 1211, Springer, Berlin, 1986  mathscinet  zmath
  2. M. B. Sevryuk, “Linear reversible systems and their versal deformations”, J. Soviet Math., 60:5 (1992), 1663–1680  crossref  mathscinet
  3. H. W. Broer, G. B. Huitema and M. B. Sevryuk, Quasi-Periodic Motions in Families of Dynamical Systems. Order amidst Chaos, Lecture Notes in Math., 1645, Springer, Berlin, 1996  mathscinet
  4. M. B. Sevryuk, “Partial preservation of frequencies and Floquet exponents in KAM theory”, Proceedings of the Steklov Institute of Mathematics, 259 (2007), 167–195  crossref  mathscinet
  5. H. W. Broer and M. B. Sevryuk, “KAM Theory: Quasi-periodicity in Dynamical Systems”, Chapter 6, Handbook of Dynamical Systems. Vol. 3, Editors: H. W. Broer, B. Hasselblatt and F. Takens, Elsevier B.V., Amsterdam, 2010, 249–344
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. M. B. Sevryuk, “Partial preservation of frequencies and floquet exponents of invariant tori in the reversible KAM context 2”, CMFD, 63:3 (2017),  516–541  mathnet
2. Mikhail B. Sevryuk, “Herman's approach to quasi-periodic perturbations in the reversible KAM context 2”, Mosc. Math. J., 17:4 (2017),  803–823  mathnet  isi
3. Mikhail B. Sevryuk, “Families of Invariant Tori in KAM Theory: Interplay of Integer Characteristics”, Regul. Chaotic Dyn., 22:6 (2017),  603–615  mathnet  mathscinet  isi  scopus
4. Mikhail B. Sevryuk, “Whitney Smooth Families of Invariant Tori within the Reversible Context 2 of KAM Theory”, Regul. Chaotic Dyn., 21:6 (2016),  599–620  mathnet  mathscinet  isi  scopus
5. Mikhail B. Sevryuk, “Translation of the V. I. Arnold Paper "From Superpositions to KAM Theory" (Vladimir Igorevich Arnold. Selected–60, Moscow: PHASIS, 1997, pp. 727–740)”, Regul. Chaotic Dyn., 19:6 (2014),  734–744  mathnet  mathscinet  zmath  isi
6. Vincenzo Aquilanti, Andrea Lombardi, Mikhail B. Sevryuk, “Statistics of Energy Partitions for Many-Particle Systems in Arbitrary Dimension”, Regul. Chaotic Dyn., 19:3 (2014),  318–347  mathnet  mathscinet  zmath  isi
7. Mikhail B. Sevryuk, “KAM theory for lower dimensional tori within the reversible context 2”, Mosc. Math. J., 12:2 (2012),  435–455  mathnet  mathscinet  zmath  isi
8. Mikhail B. Sevryuk, “The reversible context 2 in KAM theory: the first steps”, Regul. Chaotic Dyn., 16:1-2 (2011),  24–38  mathnet  mathscinet  zmath
9. M. B. Sevryuk, “Partial Preservation of Frequencies and Floquet Exponents in KAM Theory”, Tr. Mat. Inst. Steklova, 259 (2007),  174–202  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 259 (2007), 167–195  elib  scopus
10. M. B. Sevryuk, “The classical KAM theory at the dawn of the twenty-first century”, Mosc. Math. J., 3:3 (2003),  1113–1144  mathnet  mathscinet  zmath  isi
11. M. B. Sevryuk, “On the Convergence of Coordinate Transformations in the KAM Procedure”, Regul. Chaotic Dyn., 5:2 (2000),  181–188  mathnet  mathscinet  zmath
12. M. B. Sevryuk, “Invariant tori of intermediate dimensions in Hamiltonian systems”, Regul. Chaotic Dyn., 3:1 (1998),  39–48  mathnet
13. M. B. Sevryuk, “Invariant tori of intermediate dimensions in Hamiltonian systems”, Regul. Chaotic Dyn., 2:3-4 (1997),  30–40  mathnet  mathscinet  zmath
14. M. B. Sevryuk, “Some problems of the KAM-theory: conditionally-periodic motions in typical systems”, Uspekhi Mat. Nauk, 50:2(302) (1995),  111–124  mathnet  mathscinet  zmath; Russian Math. Surveys, 50:2 (1995), 341–353  isi
15. M. B. Sevryuk, “Estimate of the number of collisions of $n$ elastic particles on a line”, TMF, 96:1 (1993),  64–78  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 96:1 (1993), 818–826  isi
16. M. B. Sevryuk, “Stationary and nonstationary stability of periodic solutions of reversible systems”, Funktsional. Anal. i Prilozhen., 23:2 (1989),  40–48  mathnet  mathscinet  zmath; Funct. Anal. Appl., 23:2 (1989), 116–123  isi
17. M. B. Sevryuk, “On invariant tori of reversible systems in the neighbourhood of an equilibrium position”, Uspekhi Mat. Nauk, 42:4(256) (1987),  191–192  mathnet  mathscinet  zmath; Russian Math. Surveys, 42:4 (1987), 147–148  isi
18. M. B. Sevryuk, “Integral homology of spaces of degenerate binary forms over $\mathbf{C}$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1985, 5,  18–20  mathnet  mathscinet  zmath
19. M. B. Sevryuk, “The cohomology of projectively compactified complex swallow-tails and their complements”, Uspekhi Mat. Nauk, 39:5(239) (1984),  251–252  mathnet  mathscinet  zmath; Russian Math. Surveys, 39:5 (1984), 285–286  isi

20. M. B. Sevryuk, “On the history of KAM theory”, Nelin. Dinam., 12:2 (2016),  289–293  mathnet  elib
21. M. B. Sevryuk, “Мой научный руководитель — В. И. Арнольд”, Mat. Pros., Ser. 3, 2 (1998),  13–18  mathnet
22. M. B. Sevryuk, “Invariant sets of degenerate Hamiltonian systems near equilibria”, Regul. Chaotic Dyn., 3:3 (1998),  82–92  mathnet  mathscinet  zmath
23. D. V. Anosov, A. A. Bolibrukh, V. A. Vassiliev, A. M. Vershik, A. A. Gonchar, M. L. Gromov, S. M. Gusein-Zade, V. M. Zakalyukin, Yu. S. Ilyashenko, V. V. Kozlov, M. L. Kontsevich, Yu. I. Manin, A. I. Neishtadt, S. P. Novikov, Yu. S. Osipov, M. B. Sevryuk, Ya. G. Sinai, A. N. Tyurin, L. D. Faddeev, B. A. Khesin, A. G. Khovanskii, “Vladimir Igorevich Arnol'd (on his 60th birthday)”, Uspekhi Mat. Nauk, 52:5(317) (1997),  235–255  mathnet  mathscinet; Russian Math. Surveys, 52:5 (1997), 1117–1139  isi

Presentations in Math-Net.Ru
1. The classical KAM theory in the last decade: a slow progress
M. B. Sevryuk
The Seventh International Conference on Differential and Functional Differential Equations
August 24, 2014 12:10   
2. Kinetic energy statistics partitions in multidimensional systems of classical particles
M. B. Sevryuk
International conference "Analysis and Singularities" dedicated to the 75th anniversary of Vladimir Igorevich Arnold
December 17, 2012 14:30   

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020