Gavrilyuk Aleksandr L'vovich

Statistics Math-Net.Ru
Total publications: 16
Scientific articles: 16

Number of views:
This page:933
Abstract pages:4573
Full texts:684
Senior Researcher
Candidate of physico-mathematical sciences
Birth date: 21.10.1984
E-mail: , ,
Keywords: strongly regular graph, distance regular graph, design.
UDC: 519.14, 512.54, 519.17, 519.724
MSC: 05C25


Symmetrical graphs and their automorphismus, designs.

Main publications:
  • O grafakh Tervilligera s $\mu\le 3$.
  • Vpolne regulyarnye grafy i blok-skhemy.
  • O grafakh Kreina bez treugolnikov.
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. Automorphisms of Graphs with Intersection Arrays $\{60,45,8;1,12,50\}$ and $\{49,36,8;1,6,42\}$
A. L. Gavrilyuk, A. A. Makhnev
Mat. Zametki, 101:6 (2017),  823–831
2. On realizability of a graph as the prime graph of a finite group
A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat'ev, N. V. Maslova
Sib. Èlektron. Mat. Izv., 11 (2014),  246–257
3. Distance-regular graph with the intersection array $\{45,30,7;1,2,27\}$ does not exist
A. L. Gavrilyuk, A. A. Makhnev
Diskr. Mat., 25:2 (2013),  13–30
4. On the Godsil–Higman necessary condition for equitable partitions of association schemes
A. L. Gavrilyuk, I. Yu. Mogilnykh
Sib. Èlektron. Mat. Izv., 10 (2013),  699–704
5. On the vertex connectivity of Deza graphs
A. L. Gavrilyuk, S. V. Goryainov, V. V. Kabanov
Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  94–103
6. On Terwilliger Graphs in Which the Neighborhood of Each Vertex is Isomorphic to the Hoffman–Singleton Graph
A. L. Gavrilyuk, A. A. Makhnev
Mat. Zametki, 89:5 (2011),  673–685
7. Investigation of parameters of coding in a point-locomotive communication channel
A. L. Gavrilyuk
Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  38–52
8. Distance-regular graphs in which neighborhoods of vertices are isomorphic to the Gewirtz graph
A. L. Gavrilyuk, A. A. Makhnev, D. V. Paduchikh
Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  35–47
9. Classification of Ryser Graphs
A. L. Gavrilyuk
Mat. Zametki, 86:1 (2009),  14–21
10. On Terwilliger graphs with $\mu=4$
A. L. Gavrilyuk
Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  84–93
11. Automorphisms of Terwilliger graphs with $\mu=2$
A. L. Gavrilyuk, Wenbin Guo, A. A. Makhnev
Algebra Logika, 47:5 (2008),  584–600
12. On automorphisms of a strongly regular graph $(784,116,0,20)$
A. L. Gavrilyuk
Sib. Èlektron. Mat. Izv., 5 (2008),  80–87
13. Terwilliger Graphs with $\mu\le3$
A. L. Gavrilyuk, A. A. Makhnev
Mat. Zametki, 82:1 (2007),  14–26
14. Об изоспектральных подграфах бирегулярных геодезических графов диаметра 2
A. L. Gavrilyuk
Trudy Inst. Mat. i Mekh. UrO RAN, 13:4 (2007),  49–60
15. Об автоморфизмах дистанционно регулярного графа с массивом пересечений $\{60,45,8;1,12,50\}$
A. L. Gavrilyuk, A. A. Makhnev
Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  41–53
16. Amply regular graphs and block designs
A. L. Gavrilyuk, A. A. Makhnev
Sibirsk. Mat. Zh., 47:4 (2006),  753–768

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018