RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Iskenderov, Bala Aga-Gusein ogly

Statistics Math-Net.Ru
Total publications: 12
Scientific articles: 12

Number of views:
This page:642
Abstract pages:1531
Full texts:595
References:212
E-mail: ,

http://www.mathnet.ru/eng/person20411
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/189365

Publications in Math-Net.Ru
2012
1. B. A. Iskenderov, Dzh. Yu. Mamedov, “Asymptotic expansion at infinity of the solution to the Cauchy problem for the Sobolev equation”, Sibirsk. Mat. Zh., 53:3 (2012),  580–596  mathnet  mathscinet; Siberian Math. J., 53:3 (2012), 461–476  isi  scopus
2009
2. B. A.-G. Iskenderov, D. Yu. Mamedov, S. E. Suleimanov, “Mixed problem for the equation governing inertia-gravity waves in the Boussinesq approximation in a unbounded cylindrical domain”, Zh. Vychisl. Mat. Mat. Fiz., 49:9 (2009),  1659–1675  mathnet  zmath; Comput. Math. Math. Phys., 49:9 (2009), 1583–1600  isi  scopus
2006
3. F. B. Guseinov, B. A. Iskenderov, “On a mixed problem for the Barenblatt–Zheltov–Kochina equation in a domain cylindrical with respect to the space variables”, Uspekhi Mat. Nauk, 61:2(368) (2006),  165–166  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 61:2 (2006), 351–352  isi  scopus
4. B. A. Iskenderov, A. I. Mamedova, “A mixed problem for the equation of internal gravity waves in an infinite cylindrical domain”, Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006),  1475–1493  mathnet  mathscinet; Comput. Math. Math. Phys., 46:8 (2006), 1399–1417  scopus
2005
5. B. A.-G. Iskenderov, A. I. Mamedova, “A mixed problem for the Boussinesq equation in a bounded domain and the behavior of its solution as time tends to infinity”, Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005),  1048–1059  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:6 (2005), 1011–1022
2004
6. B. A. Iskenderov, V. G. Sardarov, “A mixed problem for the Boussinesq equation in a cylindrical domain and the behavior of its solution for large time values”, Zh. Vychisl. Mat. Mat. Fiz., 44:3 (2004),  514–527  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 44:3 (2004), 485–498
2001
7. B. A. Iskenderov, “The behavior of the solution of a mixed problem for the Sobolev equation in a cylindrical domain as $t\to+\infty$”, Zh. Vychisl. Mat. Mat. Fiz., 41:9 (2001),  1366–1378  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 41:9 (2001), 1299–1311
1996
8. B. A. Iskenderov, “Radiation principles for higher-order elliptic equations in a tube domain”, Zh. Vychisl. Mat. Mat. Fiz., 36:1 (1996),  73–91  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 36:1 (1996), 59–74  isi
1993
9. B. A. Iskenderov, A. I. Mekhtieva, “Radiation principles for the Helmholtz equation in a multidimensional layer with impedance boundary conditions”, Differ. Uravn., 29:8 (1993),  1462–1464  mathnet  mathscinet; Differ. Equ., 29:8 (1993), 1268–1271
1987
10. B. A. Iskenderov, E. Kh. Eivazov, A. N. Èfendieva, “Radiation principles for a higher-order elliptic equation in a tube domain”, Differ. Uravn., 23:10 (1987),  1804–1807  mathnet  mathscinet  zmath
1977
11. A. B. Akimov, B. A. Iskenderov, “The limit absorption principle, the limit amplitude principle and partial radiation conditions for a boundary value problem in an $n$-dimensional layer for the Helmholtz equation”, Differ. Uravn., 13:8 (1977),  1503–1505  mathnet  mathscinet
1975
12. M. G. Gasymov, B. A. Iskenderov, “The principle of limiting amplitude for a hyperbolic equation with constant coefficients”, Dokl. Akad. Nauk SSSR, 220:5 (1975),  1012–1014  mathnet  mathscinet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019