RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Adzhemyan Loran Tsolakovich

Statistics Math-Net.Ru
Total publications: 37
Scientific articles: 37

Number of views:
This page:996
Abstract pages:9423
Full texts:3375
References:859
Professor
E-mail:

http://www.mathnet.ru/eng/person20861
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/200924

Publications in Math-Net.Ru
1. Representation of renormalization group functions by nonsingular integrals in a model of the critical dynamics of ferromagnets: The fourth order of the $\varepsilon$-expansion
L. Ts. Adzhemyan, S. E. Vorob'eva, E. V. Ivanova, M. V. Kompaniets
TMF, 195:1 (2018),  105–116
2. Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals in models of critical dynamics
L. Ts. Adzhemyan, S. E. Vorobyeva, M. V. Kompaniets
TMF, 185:1 (2015),  3–11
3. Principle of maximal randomness and parity violation in turbulence
L. Ts. Adzhemyan, M. Gnatich, M. V. Kompaniets
TMF, 176:1 (2013),  3–12
4. Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals: Proof of the main relation
L. Ts. Adzhemyan, M. V. Kompaniets, S. V. Novikov, V. K. Sazonov
TMF, 175:3 (2013),  325–336
5. Renormalization group and the $\varepsilon$-expansion: Representation of the $\beta$-function and anomalous dimensions by nonsingular integrals
L. Ts. Adzhemyan, M. V. Kompaniets
TMF, 169:1 (2011),  100–111
6. Renormalization group in the theory of turbulence: Three-loop approximation as $d\to\infty$
L. Ts. Adzhemyan, N. V. Antonov, P. B. Goldin, T. L. Kim, M. V. Kompaniets
TMF, 158:3 (2009),  460–477
7. Anomalous scaling in the model of turbulent advection of a vector field
L. Ts. Adzhemyan, S. V. Novikov
TMF, 146:3 (2006),  467–487
8. Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion
L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev
TMF, 120:2 (1999),  309–314
9. $H$-Model of critical dynamics: Two-loop calculations of RG functions and critical indices
L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. S. Kabrits, M. V. Kompaniets
TMF, 119:1 (1999),  73–92
10. H-model of critical dynamics: Choice of dynamic variables, elimination of sound modes, and equations for sound waves in the neighborhood of $T_{\mathrm c}$
L. Ts. Adzhemyan, A. N. Vasil'ev
TMF, 117:1 (1998),  140–160
11. Renormalization group in turbulence theory: Exactly solvable Heisenberg model
L. Ts. Adzhemyan, N. V. Antonov
TMF, 115:2 (1998),  245–262
12. The renormalization group investigation of correlation functions and composite operators of the model of stohastic magnetic hydrodynamics
L. Ts. Adzhemyan, D. Yu. Volchenckov, M. Yu. Nalimov
TMF, 107:1 (1996),  142–154
13. Calculation of the spectra for developed decaying turbulence in the energy-containing and inertial regions
L. Ts. Adzhemyan, S. V. Borisenok, M. Yu. Nalimov
TMF, 106:3 (1996),  416–424
14. Quantum field renormalization group in the theory of fully developed turbulence
L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev
UFN, 166:12 (1996),  1257–1284
15. Renormalization group approach and short-distance expansion in theory of developed turbulence: Asymptotics of the triplex equal-time correlation function
L. Ts. Adzhemyan, S. V. Borisenok, V. I. Girina
TMF, 105:3 (1995),  450–461
16. Renormalization-group approach to the problem of the effect of compressibility on the spectral properties of developed turbulence
L. Ts. Adzhemyan, M. Yu. Nalimov, M. M. Stepanova
TMF, 104:2 (1995),  260–270
17. The problem of justifying Kolmogorov's conjectures in the stochastic theory of turbulence
L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasiliev, M. M. Perekalin
Zap. Nauchn. Sem. POMI, 224 (1995),  43–54
18. Calculation of the SDE-contribution of the dissipation operator to the energy spectrum of developed turbulence
L. V. Adzhemyan, L. Ts. Adzhemyan
Zap. Nauchn. Sem. POMI, 224 (1995),  36–42
19. Composite operators, short–distance expansion and Galilean invariance in the theory of fully developed turbulence. Infrared corrections to the Kolmogorov's scaling
L. Ts. Adzhemyan, N. V. Antonov, T. L. Kim
TMF, 100:3 (1994),  382–401
20. The principle of maximum randomness in the theory of fully developed turbulence. II. Isotropic decaying turbulence
L. Ts. Adzhemyan, M. Yu. Nalimov
TMF, 96:1 (1993),  150–159
21. The principle of maximum randomness in the theory of fully developed turbulence. I. Homogeneous isotropic turbulence
L. Ts. Adzhemyan, M. Yu. Nalimov
TMF, 91:2 (1992),  294–308
22. Wave scattering in a randomly inhomogeneous medium with long-range noise correlation function $\sim1/r$
L. Ts. Adzhemyan, A. N. Vasil'ev, M. M. Perekalin, Kh. Yu. Reittu
TMF, 84:2 (1990),  250–261
23. Quantum field renormalization group in the theory of stochastic Langmuir turbulence
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich, Yu. M. Pis'mak
TMF, 78:3 (1989),  368–383
24. Wave propagation in a randomly inhomogeneous medium with strongly developed fluctuations. IV. Light wave in a uniaxial liquid crystal
L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak
TMF, 78:2 (1989),  200–214
25. Propagation of waves in a randomly inhomogeneous medium with strongly developed fluctuations. III. Arbitrary power-law noise correlation function
L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak
TMF, 74:3 (1988),  360–372
26. Renormalization-group approach in the theory of turbulence: Renormalization and critical dimensions of the composite operators of the energy-momentum tensor
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich
TMF, 74:2 (1988),  180–191
27. Turbulent dynamo as spontaneous symmetry breaking
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich
TMF, 72:3 (1987),  369–383
28. Propagation of waves in a randomly inhomogeneous medium with strongly developed fluctuations. II. Infrared representation and large-distance behavior
L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak
TMF, 68:3 (1986),  323–337
29. Propagation of waves in a randomly inhomogeneous medium with strongly developed fluctuations. I. Renormalization group and $4-\varepsilon$-expansion
L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak
TMF, 68:2 (1986),  198–209
30. Quantum-field renormalization group in the theory of turbulence: Magnetohydrodynamics
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich
TMF, 64:2 (1985),  196–207
31. Renormalization-group approach to the theory of turbulence. Inclusion of a passive admixture
L. Ts. Adzhemyan, A. N. Vasil'ev, M. Gnatich
TMF, 58:1 (1984),  72–78
32. Renormalization-group approach in the theory of turbulence: The dimensions of composite operators
L. Ts. Adzhemyan, A. N. Vasil'ev, Yu. M. Pis'mak
TMF, 57:2 (1983),  268–281
33. Calculation of the hydrodynamic contributions to the two-time correlation functions by means of the nonequilibrium distribution function
L. V. Adzhemyan, L. Ts. Adzhemyan, V. P. Romanov
TMF, 27:1 (1976),  104–114
34. Noncumulant projection and elimination of time derivatives from the nonequilibrium distribution function
L. Ts. Adzhemyan, F. M. Kuni
TMF, 24:3 (1975),  368–381
35. Time asymptotic behavior of the kinetic kernels of linear hydrodynamics
L. Ts. Adzhemyan, A. P. Grinin, F. M. Kuni
TMF, 24:2 (1975),  255–264
36. Method of Bogolyubov's kinetic equation in nonlinear statistical hydrodynamics
L. Ts. Adzhemyan, F. M. Kuni, T. Yu. Novozhilova
TMF, 19:1 (1974),  125–136
37. Nonlinear generalization of Mori's method of projection operators
L. Ts. Adzhemyan, F. M. Kuni, T. Yu. Novozhilova
TMF, 18:3 (1974),  383–392

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019