RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Vinogradov Askol'd Ivanovich
(1929–2005)

Statistics Math-Net.Ru
Total publications: 52
Scientific articles: 44
Citations to the author: 36
Cited articles: 22

Number of views:
This page:1455
Abstract pages:4827
Full texts:1755
References:36
Doctor of physico-mathematical sciences

http://www.mathnet.ru/eng/person21757
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=203353

Publications in Math-Net.Ru
1. A generalized square of the zeta function. The spectral decomposition. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 330 (2006),  77–92
2. A generalized square of the zeta function. The spectral decomposition
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 322 (2005),  17–44
3. The Linnik conjecture. The local approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 319 (2004),  71–80
4. H. Weyl asymptotics and Rankin convolutions
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 305 (2003),  44–59
5. The reflection operator and canonical bases
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 291 (2002),  109–130
6. The points beneath a hyperbola and the circle problem. A spectral approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 289 (2002),  63–75
7. The Linnik conjecture. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 283 (2001),  37–49
8. The Selberg $Z$-function and the Lindelöf conjecture
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 269 (2000),  151–163
9. The Linnik conjecture. I
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 265 (1999),  64–76
10. The Selberg $Z$-function. A local approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 260 (1999),  298–316
11. Binary problem. A spectral approach. III
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 251 (1998),  195–214
12. Binary problem. A spectral approach. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 251 (1998),  178–194
13. The Petersson conjecture for the zeroth weight. I
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 249 (1997),  118–152
14. Binary problems. A spectral approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 245 (1997),  130–148
15. Comparison of the specrta. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 236 (1997),  50–67
16. Comparison of spectra
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 228 (1996),  67–76
17. Arcs and series of Farey
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 226 (1996),  52–59
18. Nonhomogeneous Rankin convolutions
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 226 (1996),  37–51
19. Convolutions. Comparison of spectral expansions at different vertices
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 227 (1995),  23–40
20. Convolutions. Spectral decompositions over different vertices
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 224 (1995),  129–145
21. Mean value of Hecke series of parabolic forms
V. A. Bykovskii, A. I. Vinogradov
Trudy Mat. Inst. Steklov., 200 (1991),  57–74
22. The zeta-function of a convolution
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 183 (1990),  22–48
23. The $SL_n$-technique and density hypothesis
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 168 (1988),  5–10
24. Analytic continuation of $\zeta_3(s,k)$ in the critical strip. Arithmetical part
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 162 (1987),  43–76
25. Poincare series in $SL(3,\mathbb{R})$
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 160 (1987),  37–40
26. Nonhomogeneous convolutions
V. A. Bykovskii, A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 160 (1987),  16–30
27. Zeta function of the additive divisor problem and the spectral expansion of the automorphic Laplacian
A. I. Vinogradov, L. A. Takhtadzhyan
Zap. Nauchn. Sem. LOMI, 134 (1984),  84–116
28. Analogues of the Vinogradov–Gauss formula in the critical strip
A. I. Vinogradov, L. A. Takhtadzhyan
Trudy Mat. Inst. Steklov., 158 (1981),  45–68
29. Analogues of the Gauss–Vinogradov formula on the critical line
A. I. Vinogradov, L. A. Takhtadzhyan
Zap. Nauchn. Sem. LOMI, 109 (1981),  41–82
30. On the number of lattice points inside the sphere with transposing center
A. I. Vinogradov, M. M. Skriganov
Zap. Nauchn. Sem. LOMI, 91 (1979),  25–30
31. Theory of Eisenstein series for the group $SL(3,\mathbf R)$ and its application to a binary problem. I. Fourier expansion of the highest Eisenstein series
A. I. Vinogradov, L. A. Takhtadzhyan
Zap. Nauchn. Sem. LOMI, 76 (1978),  5–52
32. Artin's conjectures and the law of reciprocity
A. I. Vinogradov
Trudy Mat. Inst. Steklov., 132 (1973),  35–43
33. Artin's $L$-series and his conjectures
A. I. Vinogradov
Trudy Mat. Inst. Steklov., 112 (1971),  123–140
34. Artin's $L$-series and the adele group
A. I. Vinogradov
Trudy Mat. Inst. Steklov., 112 (1971),  105–122
35. On representation of numbers by binary forms
A. I. Vinogradov, V. G. Sprindzhuk
Mat. Zametki, 3:4 (1968),  369–376
36. On the cubic Gauss sum
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 31:1 (1967),  123–148
37. General Hardy–Littlewood equation
A. I. Vinogradov
Mat. Zametki, 1:2 (1967),  189–197
38. The density hypothesis for Dirichet $L$-series
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 29:4 (1965),  903–934
39. On the continuability into the left half-plane of the scalar product of Hecke $L$-series with Grossencharaktere
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965),  485–492
40. The sieve method in algebraic fields. Lower bounds
A. I. Vinogradov
Mat. Sb. (N.S.), 64(106):1 (1964),  52–78
41. On the number of classes of ideals and the group of divisor classes
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 27:3 (1963),  561–576
42. Estimate of the sum of the number of divisors in a short segment of an arithmetic progression
A. I. Vinogradov, Yu. V. Linnik
Uspekhi Mat. Nauk, 12:4(76) (1957),  277–280
43. Application of $\zeta(s)$ to the sieve of Eratosthenes
A. I. Vinogradov
Mat. Sb. (N.S.), 41(83):1 (1957),  49–80
44. On an “almost binary” problem
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 20:6 (1956),  713–750

45. A brief account of the scientific and pedagogical work of Yu. V. Linnik
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 322 (2005),  5–9
46. Nikolai Mikhailovich Korobov (on his seventieth birthday)
V. A. Bykovskii, A. I. Vinogradov, O. V. Lokutsievskii, N. I. Fel'dman
Uspekhi Mat. Nauk, 43:1(259) (1988),  221–222
47. On book of N. I. Gavrilov, The Riemann problem on the distribution of the roots of the zeta function
A. N. Andrianov, A. I. Vinogradov, Yu. V. Linnik, A. V. Malyshev, D. K. Faddeev, N. G. Chudakov, V. A. Yakubovich
Uspekhi Mat. Nauk, 26:3(159) (1971),  238–247
48. Letter to the Editor
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 33:2 (1969),  455
49. Mark Borisovich Barban (obituary)
A. I. Vinogradov, B. V. Levin, A. V. Malyshev, N. P. Romanov, N. G. Chudakov
Uspekhi Mat. Nauk, 24:2(146) (1969),  213–216
50. Review
A. I. Vinogradov
Mat. Zametki, 1:1 (1967),  119–126
51. Correction to the paper of A. I. Vinogradov “On the density hypothesis for the Dirichlet $L$-series”
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 30:3 (1966),  719–720
52. Application of $\zeta(s)$ to the sieve of Eratosthenes
A. I. Vinogradov
Mat. Sb. (N.S.), 41(83):3 (1957),  415–416

Organisations
 
Contact us:
 Terms of Use  Registration © Steklov Mathematical Institute RAS, 2014