RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Vinogradov Askol'd Ivanovich
(1929–2005)

Statistics Math-Net.Ru
Total publications: 57
Scientific articles: 48
Citations to the author: 36
Cited articles: 22

Number of views:
This page:1549
Abstract pages:5606
Full texts:1946
References:49
Doctor of physico-mathematical sciences

http://www.mathnet.ru/eng/person21757
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=203353

Publications in Math-Net.Ru
1. A generalized square of the zeta function. The spectral decomposition. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 330 (2006),  77–92
2. A generalized square of the zeta function. The spectral decomposition
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 322 (2005),  17–44
3. The Linnik conjecture. The local approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 319 (2004),  71–80
4. H. Weyl asymptotics and Rankin convolutions
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 305 (2003),  44–59
5. The reflection operator and canonical bases
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 291 (2002),  109–130
6. The points beneath a hyperbola and the circle problem. A spectral approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 289 (2002),  63–75
7. The Linnik conjecture. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 283 (2001),  37–49
8. The Selberg $Z$-function and the Lindelöf conjecture
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 269 (2000),  151–163
9. The Linnik conjecture. I
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 265 (1999),  64–76
10. The Selberg $Z$-function. A local approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 260 (1999),  298–316
11. Binary problem. A spectral approach. III
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 251 (1998),  195–214
12. Binary problem. A spectral approach. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 251 (1998),  178–194
13. The Petersson conjecture for the zeroth weight. I
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 249 (1997),  118–152
14. Binary problems. A spectral approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 245 (1997),  130–148
15. Comparison of the specrta. II
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 236 (1997),  50–67
16. Comparison of spectra
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 228 (1996),  67–76
17. Arcs and series of Farey
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 226 (1996),  52–59
18. Nonhomogeneous Rankin convolutions
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 226 (1996),  37–51
19. Convolutions. Comparison of spectral expansions at different vertices
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 227 (1995),  23–40
20. Convolutions. Spectral decompositions over different vertices
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 224 (1995),  129–145
21. Spectral decomposition of convolutions
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 212 (1994),  71–90
22. A shortened equation for convolutions
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 211 (1994),  104–119
23. Circular method and modular theory
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 205 (1993),  3–5
24. The Hardy–Littlewood conjecture. An algebraic approach
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 204 (1993),  5–10
25. Mean value of Hecke series of parabolic forms
V. A. Bykovskii, A. I. Vinogradov
Trudy Mat. Inst. Steklov., 200 (1991),  57–74
26. The zeta-function of a convolution
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 183 (1990),  22–48
27. The $SL_n$-technique and density hypothesis
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 168 (1988),  5–10
28. Analytic continuation of $\zeta_3(s,k)$ in the critical strip. Arithmetical part
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 162 (1987),  43–76
29. Poincare series in $SL(3,\mathbb{R})$
A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 160 (1987),  37–40
30. Nonhomogeneous convolutions
V. A. Bykovskii, A. I. Vinogradov
Zap. Nauchn. Sem. LOMI, 160 (1987),  16–30
31. Zeta function of the additive divisor problem and the spectral expansion of the automorphic Laplacian
A. I. Vinogradov, L. A. Takhtadzhyan
Zap. Nauchn. Sem. LOMI, 134 (1984),  84–116
32. Analogues of the Vinogradov–Gauss formula in the critical strip
A. I. Vinogradov, L. A. Takhtadzhyan
Trudy Mat. Inst. Steklov., 158 (1981),  45–68
33. Analogues of the Gauss–Vinogradov formula on the critical line
A. I. Vinogradov, L. A. Takhtadzhyan
Zap. Nauchn. Sem. LOMI, 109 (1981),  41–82
34. On the number of lattice points inside the sphere with transposing center
A. I. Vinogradov, M. M. Skriganov
Zap. Nauchn. Sem. LOMI, 91 (1979),  25–30
35. Theory of Eisenstein series for the group $SL(3,\mathbf R)$ and its application to a binary problem. I. Fourier expansion of the highest Eisenstein series
A. I. Vinogradov, L. A. Takhtadzhyan
Zap. Nauchn. Sem. LOMI, 76 (1978),  5–52
36. Artin's conjectures and the law of reciprocity
A. I. Vinogradov
Trudy Mat. Inst. Steklov., 132 (1973),  35–43
37. Artin's $L$-series and his conjectures
A. I. Vinogradov
Trudy Mat. Inst. Steklov., 112 (1971),  123–140
38. Artin's $L$-series and the adele group
A. I. Vinogradov
Trudy Mat. Inst. Steklov., 112 (1971),  105–122
39. On representation of numbers by binary forms
A. I. Vinogradov, V. G. Sprindzhuk
Mat. Zametki, 3:4 (1968),  369–376
40. On the cubic Gauss sum
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 31:1 (1967),  123–148
41. General Hardy–Littlewood equation
A. I. Vinogradov
Mat. Zametki, 1:2 (1967),  189–197
42. The density hypothesis for Dirichet $L$-series
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 29:4 (1965),  903–934
43. On the continuability into the left half-plane of the scalar product of Hecke $L$-series with Grossencharaktere
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 29:2 (1965),  485–492
44. The sieve method in algebraic fields. Lower bounds
A. I. Vinogradov
Mat. Sb. (N.S.), 64(106):1 (1964),  52–78
45. On the number of classes of ideals and the group of divisor classes
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 27:3 (1963),  561–576
46. Estimate of the sum of the number of divisors in a short segment of an arithmetic progression
A. I. Vinogradov, Yu. V. Linnik
Uspekhi Mat. Nauk, 12:4(76) (1957),  277–280
47. Application of $\zeta(s)$ to the sieve of Eratosthenes
A. I. Vinogradov
Mat. Sb. (N.S.), 41(83):1 (1957),  49–80
48. On an “almost binary” problem
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 20:6 (1956),  713–750

49. A brief account of the scientific and pedagogical work of Yu. V. Linnik
A. I. Vinogradov
Zap. Nauchn. Sem. POMI, 322 (2005),  5–9
50. Boris F. Skubenko. An essay on his life and scientific work
A. N. Andrianov, A. I. Vinogradov, E. P. Golubeva, G. V. Kuz'mina, A. P. Oskolkov, O. M. Fomenko
Zap. Nauchn. Sem. POMI, 212 (1994),  5–9
51. Nikolai Mikhailovich Korobov (on his seventieth birthday)
V. A. Bykovskii, A. I. Vinogradov, O. V. Lokutsievskii, N. I. Fel'dman
Uspekhi Mat. Nauk, 43:1(259) (1988),  221–222
52. On book of N. I. Gavrilov, The Riemann problem on the distribution of the roots of the zeta function
A. N. Andrianov, A. I. Vinogradov, Yu. V. Linnik, A. V. Malyshev, D. K. Faddeev, N. G. Chudakov, V. A. Yakubovich
Uspekhi Mat. Nauk, 26:3(159) (1971),  238–247
53. Letter to the Editor
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 33:2 (1969),  455
54. Mark Borisovich Barban (obituary)
A. I. Vinogradov, B. V. Levin, A. V. Malyshev, N. P. Romanov, N. G. Chudakov
Uspekhi Mat. Nauk, 24:2(146) (1969),  213–216
55. Review
A. I. Vinogradov
Mat. Zametki, 1:1 (1967),  119–126
56. Correction to the paper of A. I. Vinogradov “On the density hypothesis for the Dirichlet $L$-series”
A. I. Vinogradov
Izv. Akad. Nauk SSSR Ser. Mat., 30:3 (1966),  719–720
57. Application of $\zeta(s)$ to the sieve of Eratosthenes
A. I. Vinogradov
Mat. Sb. (N.S.), 41(83):3 (1957),  415–416

Organisations
 
Contact us:
 Terms of Use  Registration © Steklov Mathematical Institute RAS, 2014