RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Oskolkov Anatolii Petrovich
(1934–1995)

Statistics Math-Net.Ru
Total publications: 82
Scientific articles: 79

Number of views:
This page:1241
Abstract pages:7088
Full texts:3245
References:45

http://www.mathnet.ru/eng/person22523
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/195588

Publications in Math-Net.Ru
1. On the estimation of the Hausdorff dimension of the attractor for two-dimensional equations of Oldroyd fluids
N. A. Karazeeva, A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 226 (1996),  109–119
2. Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations in classes of smooth functions
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 230 (1995),  214–242
3. Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\varepsilon$-approximations
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 229 (1995),  247–267
4. The penalty method for the equations of viscoelastic media
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 224 (1995),  267–278
5. Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 221 (1995),  185–207
6. Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin–Voight fluids
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 219 (1994),  186–212
7. Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 215 (1994),  246–255
8. Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified Navier–Stokes equations.
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 213 (1994),  116–130
9. Initial-boundary value problem with a free surface condition for the modified Navier–Stokes equations
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 213 (1994),  93–115
10. Initial-boundary value problem with a free surface condition for the penalized equations of aqueous solutions of polymers
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 210 (1994),  241–250
11. Initial boundary-value problems for equations of slightly compressible Jeffreys–Oldroyd fluids
A. A. Kotsiolis, A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 208 (1993),  200–218
12. The initial-boundary value problem with a free surface condition for the $\varepsilon$-approximations of the Navier–Stokes equations and some their regularizations
A. A. Kotsiolis, A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 205 (1993),  38–70
13. On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 202 (1992),  158–184
14. To the stability theory for the solutions of the semilinear dissipative Sobolev type equations
A. P. Oskolkov
Zap. Nauchn. Sem. POMI, 200 (1992),  139–148
15. Nonlocal problems for some class nonlinear dissipative Sobolev type equations
A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev
Zap. Nauchn. Sem. POMI, 199 (1992),  91–113
16. Nonlocal problems for the equations of motion of the Kelvin–Voight fluids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 197 (1992),  120–158
17. Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 198 (1991),  31–48
18. Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids
A. P. Oskolkov, D. V. Emelyanova
Zap. Nauchn. Sem. LOMI, 189 (1991),  101–121
19. Nonlocal problems for the equations of filtration of nonnewtonian fluids in porous media
A. P. Oskolkov, M. M. Achmatov, R. D. Shadiev
Zap. Nauchn. Sem. LOMI, 189 (1991),  82–100
20. Some nonlocal problems for the modified Navier–Stokes equations
A. P. Oskolkov, R. D. Shadiev
Zap. Nauchn. Sem. LOMI, 188 (1991),  105–127
21. Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids
N. A. Karazeeva, A. A. Cotsiolis, A. P. Oskolkov
Trudy Mat. Inst. Steklov., 188 (1990),  59–87
22. Nonlocal problems of the theory of the equations of motion for Kelvin–Voight fluids. II
A. P. Oskolkov, R. D. Shadiev
Zap. Nauchn. Sem. LOMI, 185 (1990),  111–124
23. An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 182 (1990),  123–130
24. Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications
A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev
Zap. Nauchn. Sem. LOMI, 182 (1990),  86–101
25. Nonlocal problems of the theory of the equations of motion for Kelvin–Voight fluids
A. P. Oskolkov, R. D. Shadiev
Zap. Nauchn. Sem. LOMI, 181 (1990),  146–185
26. To the theory of global solvability on $[0,\infty)$ initial boundary-value problems for the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids
A. P. Oskolkov, R. Shadiev
Zap. Nauchn. Sem. LOMI, 180 (1990),  121–141
27. Asymptotical stability and time periodicity of “small” solutions of the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids
A. A. Kotsiolis, A. P. Oskolkov, R. Shadiev
Zap. Nauchn. Sem. LOMI, 180 (1990),  63–75
28. On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 171 (1989),  174–181
29. Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 179 (1988),  126–164
30. On the dynamical system generated by the equations of motion of the Oldroyd fluids of the order $L$
N. A. Karazeeva, A. Cotsiolis, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 164 (1987),  47–53
31. Convergent difference schemes for the equations of filtration of fluids with delay. II
A. P. Oskolkov, M. M. Achmatov
Zap. Nauchn. Sem. LOMI, 163 (1987),  138–142
32. On the equations of motion of linear viscoelastic fluids and the equations of filtration of fluids with delay
A. P. Oskolkov, M. M. Achmatov, A. Cotsiolis
Zap. Nauchn. Sem. LOMI, 163 (1987),  132–137
33. Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids
N. A. Karazeeva, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 162 (1987),  159–168
34. Convergent difference schemes for equations of motion of Oldroyd fluids
M. M. Achmatov, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 159 (1987),  143–152
35. On the dynamical system generated b the equations of motion of Oldroyd fluids
A. Cotsiolis, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 155 (1986),  136–141
36. Convergent finite-difference schemes for the equations of filtration of fluids with delay
A. P. Oskolkov, M. M. Achmatov
Zap. Nauchn. Sem. LOMI, 152 (1986),  86–93
37. On the limit behaviour and the attractor for the equations of motion of Oldroyd fluids
A. Cotsiolis, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 152 (1986),  67–71
38. On correctness of the initial-boundary value problems for the equations of fluid filtration with delay
A. P. Oskolkov, M. M. Achmatov
Zap. Nauchn. Sem. LOMI, 150 (1986),  76–86
39. On the solvability of the main initial-boundary value problem for the equations of motion of Oldroyd fluids on $(0,\infty)$ and the behaviour of its solutions as $t\to+\infty$
A. Cotsiolis, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 150 (1986),  48–52
40. Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 147 (1985),  110–119
41. On the theory of Maxwell fluids. III
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 145 (1985),  164–172
42. Unsteady flows of viscoelastic fluids
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 159 (1983),  103–131
43. On the theory of Maxwell liquids. II
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 131 (1983),  106–113
44. On the theory of nonstationary flows of the Maxwell liquids and nonlinear viso-elastio liquids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 127 (1983),  158–168
45. On the theory of nonstationary flows of nonlinear visco-elastlc liquids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 120 (1982),  142–158
46. Theory of nonstationary flows of Kelvin–Voigt fluids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 115 (1982),  191–202
47. Certain model nonstationary systems in the theory of non-Newtonian fluids. IV
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 110 (1981),  141–162
48. On the theory of Maxwell liquids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 101 (1981),  119–127
49. On the theory of the Voight liquids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 96 (1980),  233–236
50. Model nonstationary systems in the theory of non-Newtonian fluids. III
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 96 (1980),  205–232
51. Some model nonstationary systems in the theory of non-Newtonian fluids. II
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 84 (1979),  185–210
52. Construction of characteristic functions for the system of Navier–Stokes–Voigt equations and the BBM equation
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 69 (1977),  136–148
53. Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 59 (1976),  133–177
54. Certain model nonstationary systems in the theory of non-Newtonian fluids
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 127 (1975),  32–57
55. On admissible groups of transformations for some quasi-linearthir third-order equations
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 52 (1975),  158–159
56. On some quasilinears systems occuring in studing of motion of viscous fluids
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 52 (1975),  128–157
57. Certain convergent difference schemes for the Navier–Stokes equations
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 125 (1973),  164–172
58. The asymptotic behavior of the solutions of certain systems with a small parameter that approximate the Navier–Stokes system of equations
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 125 (1973),  147–163
59. Uniqueness and global solvability for boundary-value problems for the equations of motion of water solutions of polymers
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 38 (1973),  98–136
60. On the convergent difference schemes for equations of water solutions mouvement of polymers
S. P. Kartashova, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 35 (1973),  21–35
61. On the global solvability of a boundary value problem for a system of third order occuring in studying of motion of wiscous fluid
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 27 (1972),  145–160
62. A priori estimates of weighted first derivatives for certain classes of nonuniformly elliptic quasilinear equations in an unbounded domain
A. P. Oskolkov, V. A. Tarasov
Trudy Mat. Inst. Steklov., 116 (1971),  152–161
63. Certain classes on non-uniformly elliptic quasilinear equations. II
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 116 (1971),  137–151
64. On the solvability of the Diricnlet problem for quasi-linear elliptic systems in non-bounded domains in a class of bounded runctions
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 21 (1971),  104–111
65. On aquasi-linear parabolic system with a small parameter approximating the Navier–Stokes system
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 21 (1971),  79–103
66. Interior estimates of the first derivatives for a certain class of quasilinear elliptic systems
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 110 (1970),  102–106
67. Nonlocal estimates of the first derivatives of the solutions of the first boundary value problem for certain classes of nonuniformly elliptic and nonuniformly parabolic equations and systems
N. M. Ivochkina, A. P. Oskolkov
Trudy Mat. Inst. Steklov., 110 (1970),  65–101
68. On the solvability of the Dirichlet problem for quasilinear elliptic equations in unbaunded domains
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 14 (1969),  173–190
69. On certain classes of non-uniformly elliptic quasilinear equations
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 14 (1969),  156–172
70. Nonlocal estimates of the first derivatives of solutions of the first boundary value problem for nonuniformly elliptic and nonuniformly parabolic nondivergence equations
N. M. Ivochkina, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 11 (1968),  6–72
71. A remark on the estimate of Hölder constant for some non-uniform elliptic quasilinear equations
A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 7 (1968),  178–183
72. Solvability of the Dirichlet problem for quasilinear elliptic equations in an unbounded region. I
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 102 (1967),  128–136
73. A priori estimates of the first derivatives of solutions of Dirichlet's problem for nonuniformly elliptic quasilinear equations
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 102 (1967),  105–127
74. Global estimates for the first derivatives of the solutions of Dirichlet problem for nonuniform quasilinear elliptic equations
N. M. Ivochkina, A. P. Oskolkov
Zap. Nauchn. Sem. LOMI, 5 (1967),  37–109
75. Some estimates for nonuniformly elliptic equations and systems
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 92 (1966),  203–232
76. Prior estimates of the first derivatives for two-dimensional quasi-linear strongly elliptic systems
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 92 (1966),  192–202
77. Prior estimates of first derivatives for two-dimensional linear strongly elliptic systems and elliptic mappings
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 92 (1966),  182–191
78. Hölder continuity of the generalized solutions of a class of quasi-linear systems
A. P. Oskolkov
Trudy Mat. Inst. Steklov., 70 (1964),  116–132
79. On the solution of boundary-value problems for linear elliptic equations in an infinite region
A. P. Oskolkov
Dokl. Akad. Nauk SSSR, 153:1 (1963),  34–37

80. Boris F. Skubenko. An essay on his life and scientific work
A. N. Andrianov, A. I. Vinogradov, E. P. Golubeva, G. V. Kuz'mina, A. P. Oskolkov, O. M. Fomenko
Zap. Nauchn. Sem. POMI, 212 (1994),  5–9
81. A. V. Malyshev, scientist and teacher
Z. I. Borevich, A. P. Oskolkov, E. V. Podsypanin, A. I. Skopin, Yu. G. Teterin, A. V. Yakovlev
Zap. Nauchn. Sem. POMI, 211 (1994),  7–13
82. Ol'ga Aleksandrovna Ladyzhenskaya (on her sixtieth birthday)
A. D. Aleksandrov, A. P. Oskolkov, N. N. Ural'tseva, L. D. Faddeev
Uspekhi Mat. Nauk, 38:5(233) (1983),  215–223

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018