RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Oskolkov, Anatolii Petrovich
(1934–1995)

Statistics Math-Net.Ru
Total publications: 83
Scientific articles: 80

Number of views:
This page:2258
Abstract pages:10195
Full texts:4772
References:65

http://www.mathnet.ru/eng/person22523
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/195588

Publications in Math-Net.Ru
1999
1. A. P. Oskolkov, “О некоторых псевдопараболических системах уравнений с малым параметром, возникающих при численном анализе уравнений жидкостей Кельвина–Фойгта”, Vestnik Chelyabinsk. Gos. Univ., 1999, 4,  155–173  mathnet
1996
2. N. A. Karazeeva, A. P. Oskolkov, “On the estimation of the Hausdorff dimension of the attractor for two-dimensional equations of Oldroyd fluids”, Zap. Nauchn. Sem. POMI, 226 (1996),  109–119  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 89:1 (1998), 988–995
1995
3. A. P. Oskolkov, “Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations in classes of smooth functions”, Zap. Nauchn. Sem. POMI, 230 (1995),  214–242  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 91:2 (1998), 2840–2859
4. A. P. Oskolkov, “Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\varepsilon$-approximations”, Zap. Nauchn. Sem. POMI, 229 (1995),  247–267  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 89:6 (1998), 1750–1763
5. A. P. Oskolkov, “The penalty method for the equations of viscoelastic media”, Zap. Nauchn. Sem. POMI, 224 (1995),  267–278  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 88:2 (1998), 283–291
6. A. P. Oskolkov, “Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations”, Zap. Nauchn. Sem. POMI, 221 (1995),  185–207  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 87:2 (1997), 3393–3408
1994
7. A. P. Oskolkov, “Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin–Voight fluids”, Zap. Nauchn. Sem. POMI, 219 (1994),  186–212  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 86:4 (1997), 2926–2943
8. A. P. Oskolkov, “Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids”, Zap. Nauchn. Sem. POMI, 215 (1994),  246–255  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 85:1 (1997), 1715–1721
9. A. P. Oskolkov, “Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified Navier–Stokes equations.”, Zap. Nauchn. Sem. POMI, 213 (1994),  116–130  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 84:1 (1997), 888–897
10. A. P. Oskolkov, “Initial-boundary value problem with a free surface condition for the modified Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 213 (1994),  93–115  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 84:1 (1997), 873–887
11. A. P. Oskolkov, “Initial-boundary value problem with a free surface condition for the penalized equations of aqueous solutions of polymers”, Zap. Nauchn. Sem. POMI, 210 (1994),  241–250  mathnet  mathscinet  zmath; J. Math. Sci., 83:2 (1997), 320–326
1993
12. A. A. Kotsiolis, A. P. Oskolkov, “Initial boundary-value problems for equations of slightly compressible Jeffreys–Oldroyd fluids”, Zap. Nauchn. Sem. POMI, 208 (1993),  200–218  mathnet  mathscinet  zmath; J. Math. Sci., 81:2 (1996), 2578–2588
13. A. A. Kotsiolis, A. P. Oskolkov, “The initial-boundary value problem with a free surface condition for the $\varepsilon$-approximations of the Navier–Stokes equations and some their regularizations”, Zap. Nauchn. Sem. POMI, 205 (1993),  38–70  mathnet  mathscinet  zmath; J. Math. Sci., 80:3 (1996), 1773–1801
1992
14. A. P. Oskolkov, “On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids”, Zap. Nauchn. Sem. POMI, 202 (1992),  158–184  mathnet  mathscinet  zmath; J. Math. Sci., 79:3 (1996), 1129–1145
15. A. P. Oskolkov, “To the stability theory for the solutions of the semilinear dissipative Sobolev type equations”, Zap. Nauchn. Sem. POMI, 200 (1992),  139–148  mathnet  mathscinet  zmath; J. Math. Sci., 77:3 (1995), 3225–3231
16. A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev, “Nonlocal problems for some class nonlinear dissipative Sobolev type equations”, Zap. Nauchn. Sem. POMI, 199 (1992),  91–113  mathnet  mathscinet  zmath; J. Math. Sci., 77:2 (1995), 3076–3089
17. A. P. Oskolkov, “Nonlocal problems for the equations of motion of the Kelvin–Voight fluids”, Zap. Nauchn. Sem. LOMI, 197 (1992),  120–158  mathnet  mathscinet  zmath; J. Math. Sci., 75:6 (1995), 2058–2078
1991
18. A. P. Oskolkov, “Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations”, Zap. Nauchn. Sem. LOMI, 198 (1991),  31–48  mathnet  mathscinet  zmath; J. Soviet Math., 64:1 (1993), 724–736
19. A. P. Oskolkov, D. V. Emelyanova, “Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids”, Zap. Nauchn. Sem. LOMI, 189 (1991),  101–121  mathnet  mathscinet  zmath; J. Soviet Math., 62:5 (1992), 3004–3016
20. A. P. Oskolkov, M. M. Achmatov, R. D. Shadiev, “Nonlocal problems for the equations of filtration of nonnewtonian fluids in porous media”, Zap. Nauchn. Sem. LOMI, 189 (1991),  82–100  mathnet  mathscinet  zmath; J. Soviet Math., 62:5 (1992), 2992–3004
21. A. P. Oskolkov, R. D. Shadiev, “Some nonlocal problems for the modified Navier–Stokes equations”, Zap. Nauchn. Sem. LOMI, 188 (1991),  105–127  mathnet  mathscinet  zmath; J. Math. Sci., 70:3 (1994), 1789–1805
1990
22. N. A. Karazeeva, A. A. Cotsiolis, A. P. Oskolkov, “Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids”, Trudy Mat. Inst. Steklov., 188 (1990),  59–87  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 188 (1991), 73–108
23. A. P. Oskolkov, R. D. Shadiev, “Nonlocal problems of the theory of the equations of motion for Kelvin–Voight fluids. II”, Zap. Nauchn. Sem. LOMI, 185 (1990),  111–124  mathnet  mathscinet  zmath; J. Soviet Math., 59:6 (1992), 1206–1214
24. A. P. Oskolkov, “An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem”, Zap. Nauchn. Sem. LOMI, 182 (1990),  123–130  mathnet  mathscinet  zmath; J. Soviet Math., 62:3 (1992), 2802–2806
25. A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev, “Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications”, Zap. Nauchn. Sem. LOMI, 182 (1990),  86–101  mathnet  mathscinet  zmath; J. Soviet Math., 62:3 (1992), 2777–2788
26. A. P. Oskolkov, R. D. Shadiev, “Nonlocal problems of the theory of the equations of motion for Kelvin–Voight fluids”, Zap. Nauchn. Sem. LOMI, 181 (1990),  146–185  mathnet  mathscinet  zmath; J. Soviet Math., 62:2 (1992), 2699–2723
27. A. P. Oskolkov, R. Shadiev, “To the theory of global solvability on $[0,\infty)$ initial boundary-value problems for the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids”, Zap. Nauchn. Sem. LOMI, 180 (1990),  121–141  mathnet  mathscinet  zmath; J. Math. Sci., 68:2 (1994), 240–253
28. A. A. Kotsiolis, A. P. Oskolkov, R. Shadiev, “Asymptotical stability and time periodicity of “small” solutions of the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids”, Zap. Nauchn. Sem. LOMI, 180 (1990),  63–75  mathnet  mathscinet  zmath; J. Math. Sci., 68:2 (1994), 202–211
1989
29. A. P. Oskolkov, “On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids”, Zap. Nauchn. Sem. LOMI, 171 (1989),  174–181  mathnet  mathscinet  zmath; J. Soviet Math., 56:2 (1991), 2396–2402
1988
30. A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids”, Trudy Mat. Inst. Steklov., 179 (1988),  126–164  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 179 (1989), 137–182
1987
31. N. A. Karazeeva, A. Cotsiolis, A. P. Oskolkov, “On the dynamical system generated by the equations of motion of the Oldroyd fluids of the order $L$”, Zap. Nauchn. Sem. LOMI, 164 (1987),  47–53  mathnet  zmath
32. A. P. Oskolkov, M. M. Achmatov, “Convergent difference schemes for the equations of filtration of fluids with delay. II”, Zap. Nauchn. Sem. LOMI, 163 (1987),  138–142  mathnet  zmath
33. A. P. Oskolkov, M. M. Achmatov, A. Cotsiolis, “On the equations of motion of linear viscoelastic fluids and the equations of filtration of fluids with delay”, Zap. Nauchn. Sem. LOMI, 163 (1987),  132–137  mathnet  zmath
34. N. A. Karazeeva, A. P. Oskolkov, “Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids”, Zap. Nauchn. Sem. LOMI, 162 (1987),  159–168  mathnet  zmath
35. M. M. Achmatov, A. P. Oskolkov, “Convergent difference schemes for equations of motion of Oldroyd fluids”, Zap. Nauchn. Sem. LOMI, 159 (1987),  143–152  mathnet  zmath
1986
36. A. Cotsiolis, A. P. Oskolkov, “On the dynamical system generated bу the equations of motion of Oldroyd fluids”, Zap. Nauchn. Sem. LOMI, 155 (1986),  136–141  mathnet  zmath; J. Soviet Math., 41:2 (1988), 967–970
37. A. P. Oskolkov, M. M. Achmatov, “Convergent finite-difference schemes for the equations of filtration of fluids with delay”, Zap. Nauchn. Sem. LOMI, 152 (1986),  86–93  mathnet  zmath
38. A. Cotsiolis, A. P. Oskolkov, “On the limit behaviour and the attractor for the equations of motion of Oldroyd fluids”, Zap. Nauchn. Sem. LOMI, 152 (1986),  67–71  mathnet  zmath
39. A. P. Oskolkov, M. M. Achmatov, “On correctness of the initial-boundary value problems for the equations of fluid filtration with delay”, Zap. Nauchn. Sem. LOMI, 150 (1986),  76–86  mathnet  zmath
40. A. Cotsiolis, A. P. Oskolkov, “On the solvability of the main initial-boundary value problem for the equations of motion of Oldroyd fluids on $(0,\infty)$ and the behaviour of its solutions as $t\to+\infty$”, Zap. Nauchn. Sem. LOMI, 150 (1986),  48–52  mathnet  zmath
1985
41. A. P. Oskolkov, “Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids”, Zap. Nauchn. Sem. LOMI, 147 (1985),  110–119  mathnet  mathscinet  zmath
42. A. P. Oskolkov, “On the theory of Maxwell fluids. III”, Zap. Nauchn. Sem. LOMI, 145 (1985),  164–172  mathnet  mathscinet  zmath
1983
43. A. P. Oskolkov, “Unsteady flows of viscoelastic fluids”, Trudy Mat. Inst. Steklov., 159 (1983),  103–131  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 159 (1984), 105–134
44. A. P. Oskolkov, “On the theory of Maxwell liquids. II”, Zap. Nauchn. Sem. LOMI, 131 (1983),  106–113  mathnet  mathscinet  zmath
45. A. P. Oskolkov, “On the theory of nonstationary flows of the Maxwell liquids and nonlinear visсo-elastio liquids”, Zap. Nauchn. Sem. LOMI, 127 (1983),  158–168  mathnet  mathscinet  zmath
1982
46. A. P. Oskolkov, “On the theory of nonstationary flows of nonlinear visco-elastlc liquids”, Zap. Nauchn. Sem. LOMI, 120 (1982),  142–158  mathnet  mathscinet  zmath
47. A. P. Oskolkov, “Theory of nonstationary flows of Kelvin–Voigt fluids”, Zap. Nauchn. Sem. LOMI, 115 (1982),  191–202  mathnet  mathscinet  zmath; J. Soviet Math., 28:5 (1985), 751–758
1981
48. A. P. Oskolkov, “Certain model nonstationary systems in the theory of non-Newtonian fluids. IV”, Zap. Nauchn. Sem. LOMI, 110 (1981),  141–162  mathnet  mathscinet  zmath; J. Soviet Math., 25:1 (1984), 902–917
49. A. P. Oskolkov, “On the theory of Maxwell liquids”, Zap. Nauchn. Sem. LOMI, 101 (1981),  119–127  mathnet  mathscinet  zmath; J. Soviet Math., 23:4 (1983), 2447–2453
1980
50. A. P. Oskolkov, “On the theory of the Voight liquids”, Zap. Nauchn. Sem. LOMI, 96 (1980),  233–236  mathnet  mathscinet  zmath; J. Soviet Math., 21:5 (1983), 818–821
51. A. P. Oskolkov, “Model nonstationary systems in the theory of non-Newtonian fluids. III”, Zap. Nauchn. Sem. LOMI, 96 (1980),  205–232  mathnet  mathscinet  zmath; J. Soviet Math., 21:5 (1983), 797–818
1979
52. A. P. Oskolkov, “Some model nonstationary systems in the theory of non-Newtonian fluids. II”, Zap. Nauchn. Sem. LOMI, 84 (1979),  185–210  mathnet  mathscinet  zmath; J. Soviet Math., 21:3 (1983), 383–399
1977
53. A. P. Oskolkov, “Construction of characteristic functions for the system of Navier–Stokes–Voigt equations and the BBM equation”, Zap. Nauchn. Sem. LOMI, 69 (1977),  136–148  mathnet  mathscinet  zmath; J. Soviet Math., 10:1 (1978), 95–103
1976
54. A. P. Oskolkov, “Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids”, Zap. Nauchn. Sem. LOMI, 59 (1976),  133–177  mathnet  mathscinet  zmath; J. Soviet Math., 10:2 (1978), 299–335
1975
55. A. P. Oskolkov, “Certain model nonstationary systems in the theory of non-Newtonian fluids”, Trudy Mat. Inst. Steklov., 127 (1975),  32–57  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 127 (1975), 37–66
56. A. P. Oskolkov, “On admissible groups of transformations for some quasi-linearthir third-order equations”, Zap. Nauchn. Sem. LOMI, 52 (1975),  158–159  mathnet  mathscinet  zmath
57. A. P. Oskolkov, “On some quasilinears systems occuring in studing of motion of viscous fluids”, Zap. Nauchn. Sem. LOMI, 52 (1975),  128–157  mathnet  mathscinet  zmath
1973
58. A. P. Oskolkov, “Certain convergent difference schemes for the Navier–Stokes equations”, Trudy Mat. Inst. Steklov., 125 (1973),  164–172  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 125 (1973), 154–162
59. A. P. Oskolkov, “The asymptotic behavior of the solutions of certain systems with a small parameter that approximate the Navier–Stokes system of equations”, Trudy Mat. Inst. Steklov., 125 (1973),  147–163  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 125 (1973), 137–153
60. A. P. Oskolkov, “Uniqueness and global solvability for boundary-value problems for the equations of motion of water solutions of polymers”, Zap. Nauchn. Sem. LOMI, 38 (1973),  98–136  mathnet  mathscinet  zmath
61. S. P. Kartashova, A. P. Oskolkov, “On the convergent difference schemes for equations of water solutions mouvement of polymers”, Zap. Nauchn. Sem. LOMI, 35 (1973),  21–35  mathnet  mathscinet  zmath
1972
62. A. P. Oskolkov, “On the global solvability of a boundary value problem for a system of third order occuring in studying of motion of wiscous fluid”, Zap. Nauchn. Sem. LOMI, 27 (1972),  145–160  mathnet  mathscinet  zmath
1971
63. A. P. Oskolkov, V. A. Tarasov, “A priori estimates of weighted first derivatives for certain classes of nonuniformly elliptic quasilinear equations in an unbounded domain”, Trudy Mat. Inst. Steklov., 116 (1971),  152–161  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 116 (1971), 156–166
64. A. P. Oskolkov, “Certain classes on non-uniformly elliptic quasilinear equations. II”, Trudy Mat. Inst. Steklov., 116 (1971),  137–151  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 116 (1971), 140–155
65. A. P. Oskolkov, “On the solvability of the Diricnlet problem for quasi-linear elliptic systems in non-bounded domains in a class of bounded runctions”, Zap. Nauchn. Sem. LOMI, 21 (1971),  104–111  mathnet  mathscinet  zmath
66. A. P. Oskolkov, “On aquasi-linear parabolic system with a small parameter approximating the Navier–Stokes system”, Zap. Nauchn. Sem. LOMI, 21 (1971),  79–103  mathnet  mathscinet  zmath
1970
67. A. P. Oskolkov, “Interior estimates of the first derivatives for a certain class of quasilinear elliptic systems”, Trudy Mat. Inst. Steklov., 110 (1970),  102–106  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 110 (1970), 116–122
68. N. M. Ivochkina, A. P. Oskolkov, “Nonlocal estimates of the first derivatives of the solutions of the first boundary value problem for certain classes of nonuniformly elliptic and nonuniformly parabolic equations and systems”, Trudy Mat. Inst. Steklov., 110 (1970),  65–101  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 110 (1970), 75–115
1969
69. A. P. Oskolkov, “On the solvability of the Dirichlet problem for quasilinear elliptic equations in unbaunded domains”, Zap. Nauchn. Sem. LOMI, 14 (1969),  173–190  mathnet  mathscinet  zmath
70. A. P. Oskolkov, “On certain classes of non-uniformly elliptic quasilinear equations”, Zap. Nauchn. Sem. LOMI, 14 (1969),  156–172  mathnet  mathscinet  zmath
1968
71. N. M. Ivochkina, A. P. Oskolkov, “Nonlocal estimates of the first derivatives of solutions of the first boundary value problem for nonuniformly elliptic and nonuniformly parabolic nondivergence equations”, Zap. Nauchn. Sem. LOMI, 11 (1968),  6–72  mathnet  mathscinet  zmath
72. A. P. Oskolkov, “A remark on the estimate of Hölder constant for some non-uniform elliptic quasilinear equations”, Zap. Nauchn. Sem. LOMI, 7 (1968),  178–183  mathnet  mathscinet  zmath
1967
73. A. P. Oskolkov, “Solvability of the Dirichlet problem for quasilinear elliptic equations in an unbounded region. I”, Trudy Mat. Inst. Steklov., 102 (1967),  128–136  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 102 (1967), 145–155
74. A. P. Oskolkov, “A priori estimates of the first derivatives of solutions of Dirichlet's problem for nonuniformly elliptic quasilinear equations”, Trudy Mat. Inst. Steklov., 102 (1967),  105–127  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 102 (1967), 119–144
75. N. M. Ivochkina, A. P. Oskolkov, “Global estimates for the first derivatives of the solutions of Dirichlet problem for nonuniform quasilinear elliptic equations”, Zap. Nauchn. Sem. LOMI, 5 (1967),  37–109  mathnet  mathscinet  zmath
1966
76. A. P. Oskolkov, “Some estimates for nonuniformly elliptic equations and systems”, Trudy Mat. Inst. Steklov., 92 (1966),  203–232  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 92 (1966), 233–267
77. A. P. Oskolkov, “Prior estimates of the first derivatives for two-dimensional quasi-linear strongly elliptic systems”, Trudy Mat. Inst. Steklov., 92 (1966),  192–202  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 92 (1966), 219–232
78. A. P. Oskolkov, “Prior estimates of first derivatives for two-dimensional linear strongly elliptic systems and elliptic mappings”, Trudy Mat. Inst. Steklov., 92 (1966),  182–191  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 92 (1966), 207–218
1964
79. A. P. Oskolkov, “Hölder continuity of the generalized solutions of a class of quasi-linear systems”, Trudy Mat. Inst. Steklov., 70 (1964),  116–132  mathnet  mathscinet  zmath
1963
80. A. P. Oskolkov, “On the solution of boundary-value problems for linear elliptic equations in an infinite region”, Dokl. Akad. Nauk SSSR, 153:1 (1963),  34–37  mathnet  mathscinet  zmath

1994
81. A. N. Andrianov, A. I. Vinogradov, E. P. Golubeva, G. V. Kuz'mina, A. P. Oskolkov, O. M. Fomenko, “Boris F. Skubenko. An essay on his life and scientific work”, Zap. Nauchn. Sem. POMI, 212 (1994),  5–9  mathnet  mathscinet  zmath; J. Math. Sci., 83:6 (1997), 689–693
82. Z. I. Borevich, A. P. Oskolkov, E. V. Podsypanin, A. I. Skopin, Yu. G. Teterin, A. V. Yakovlev, “A. V. Malyshev, scientist and teacher”, Zap. Nauchn. Sem. POMI, 211 (1994),  7–13  mathnet  mathscinet; J. Math. Sci., 83:5 (1997), 565–574
1983
83. A. D. Aleksandrov, A. P. Oskolkov, N. N. Ural'tseva, L. D. Faddeev, “Ol'ga Aleksandrovna Ladyzhenskaya (on her sixtieth birthday)”, Uspekhi Mat. Nauk, 38:5(233) (1983),  215–223  mathnet  mathscinet  zmath; Russian Math. Surveys, 38:5 (1983), 171–181  isi

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020