Bolotin S., “Second species periodic orbits of the elliptic 3 body problem”, Celestial Mech. Dynam. Astronom., 93:1-4 (2006), 343–371
Bolotin S., “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063
Bolotin S., Negrini P., Shilnikov Lemma for a nondegenerate critical manifold of a Hamiltonian system, In preparation
Bolotin S. V., MacKay R. S., “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75
Bolotin S. V., Treschev D. V., “Hill's formula”, Uspekhi Mat. Nauk, 65:2 (2010), 3–70; English transl.: Russian Math. Surveys, 65:2 (2010), 191–257
Sergey V. Bolotin, “Local Adiabatic Invariants Near a Homoclinic Set of a Slow–Fast Hamiltonian System”, Proc. Steklov Inst. Math., 310 (2020), 12–24
2.
Izbrannye voprosy matematiki i mekhaniki, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Valeriya Vasilevicha Kozlova, Trudy MIAN, 310, ed. D. V. Treschev, S. V. Bolotin, A. G. Kulikovskii, I. A. Taimanov, MIAN, M., 2020 , 341 pp.
3.
A. V. Artem'ev, S. V. Bolotin, D. L. Vainchtein, A. A. Vasiliev, S. Yu. Dobrokhotov, L. M. Zelenyi, V. V. Kozlov, A. A. Petrukovich, V. V. Sidorenko, D. V. Treschev, A. I. Shafarevich, “Anatolii Iserovish Neishtadt (on his 70th birthday)”, Russian Math. Surveys, 75:5 (2020), 981–989
4.
S. V. Bolotin, A. V. Borisov, A. V. Karapetyan, B. S. Kashin, E. I. Kugushev, A. I. Neishtadt, D. O. Orlov, D. V. Treschev, “Valerii Vasil'evich Kozlov (on his 70th birthday)”, Russian Math. Surveys, 75:6 (2020), 1165–1180
2019
5.
Sergey V. Bolotin, “Jumps of Energy Near a Homoclinic Set of a Slowly Time Dependent Hamiltonian System”, Regul. Chaotic Dyn., 24:6 (2019), 682–703 (cited: 1) (cited: 1) (cited: 1)
2018
6.
S. V. Bolotin, “Jumps of energy near a separatrix in slow-fast Hamiltonian systems”, Russian Math. Surveys, 73:4 (2018), 725–727 (cited: 2) (cited: 2)
2017
7.
Sergey V. Bolotin, “Degenerate Billiards in Celestial Mechanics”, Regul. Chaotic Dyn., 22:1 (2017), 27–53 (cited: 1) (cited: 2) (cited: 2)
8.
S. V. Bolotin, V. V. Kozlov, “Topological approach to the generalized $n$-centre problem”, Russian Math. Surveys, 72:3 (2017), 451–478 (cited: 5) (cited: 1)
9.
S. V. Bolotin, V. V. Kozlov, “Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom”, Izv. Math., 81:4 (2017), 671–687 (cited: 4) (cited: 3)
2016
10.
S. V. Bolotin, “Degenerate billiards”, Proc. Steklov Inst. Math., 295 (2016), 45–62 (cited: 7) (cited: 7)
2015
11.
S. V. Bolotin, V. V. Kozlov, “Calculus of variations in the large, existence of trajectories in a domain with boundary, and Whitney's inverted pendulum problem”, Izv. Math., 79:5 (2015), 894–901 (cited: 9) (cited: 11)
12.
S. V. Bolotin, D. V. Treschev, “The anti-integrable limit”, Russian Math. Surveys, 70:6 (2015), 975–1030 (cited: 17) (cited: 12)
2014
13.
S. Bolotin, P. H. Rabinowitz, “Hybrid mountain pass homoclinic solutions of a class of semilinear elliptic PDEs”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 103–128 (cited: 7) (cited: 7)
2013
14.
S. Bolotin, P. Negrini, “Variational approach to second species periodic solutions of Poincaré three-body problem”, Discrete Contin. Dyn. Syst., 33:3 (2013), 1009–1032 , arXiv: 1104.2288 (cited: 8) (cited: 3) (cited: 9)
15.
S. V. Bolotin, T. V. Popova, “On the motion of a mechanical system inside a rolling ball”, Regul. Chaotic Dyn., 18:1-2 (2013), 159–165 (cited: 10) (cited: 9) (cited: 9) (cited: 8)
16.
S. Bolotin, P. Negrini, “Shilnikov lemma for a nondegenerate critical manifold of a Hamiltonian system”, Regul. Chaotic Dyn., 18:6 (2013), 774–800 (cited: 6) (cited: 6) (cited: 1) (cited: 6)
17.
Sergey V. Bolotin, Tatiana V. Popova, “On the motion of a mechanical system inside a rolling ball”, Nelin. Dinam., 9:1 (2013), 51–58
2012
18.
S. V. Bolotin, “Zadacha optimalnogo upravleniya kacheniem shara s rotorami”, Nelineinaya dinam., 8:4 (2012), 837–852 (cited: 3) (cited: 1)
19.
S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Regul. Chaotic Dyn., 17:6 (2012), 559–570 (cited: 9) (cited: 9) (cited: 4) (cited: 9)
2011
20.
S. Bolotin, P. H. Rabinowitz, “A note on hybrid heteroclinic solutions for a class of semilinear elliptic PDEs”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 22:2 (2011), 151–160 (cited: 1)
2010
21.
S. V. Bolotin, D. V. Treschev, “Hill's formula”, Russian Math. Surveys, 65:2 (2010), 191–257 (cited: 13) (cited: 5) (cited: 5) (cited: 11)
22.
S. V. Bolotin, A. A. Gonchar, S. P. Konovalov, E. F. Mishchenko, Yu. S. Osipov, V. A. Sadovnichii, A. G. Sergeev, Ya. V. Tatarinov, D. V. Treschev, L. D. Faddeev, “Valerii Vasil'evich Kozlov has turned 60 years old”, Russian Math. Surveys, 65:2 (2010), 389–395
23.
S. V. Bolotin, A. V. Borisov, A. A. Kilin, I. S. Mamaev, D. V. Treschev, “Valery Vasilievich Kozlov on his 60th birthday”, Regul. Chaotic Dyn., 15:4-5 (2010), 419–424
24.
A. V. Borisov, S. V. Bolotin, A. A. Kilin, I. S. Mamaev, D. V. Treschev, “Valery V. Kozlov: On the sixtieth birthday”, Nelin. Dinam., 6:3 (2010), 461–488
25.
S. V. Bolotin, A. V. Karapetyan, E. I. Kugushev, D. V. Treschev, Teoreticheskaya mekhanika, Izd-vo «Akademiya», Moskva, 2010 , 432 pp.
2007
26.
S. Bolotin, P. H. Rabinowitz, “On the multiplicity of periodic solutions of mountain pass type for a class of semilinear PDE's”, J. Fixed Point Theory Appl., 2:2 (2007), 313–331 (cited: 5) (cited: 5) (cited: 6)
2006
27.
S. Bolotin, “Symbolic dynamics of almost collision orbits and skew products of symplectic maps”, Nonlinearity, 19:9 (2006), 2041–2063 (cited: 15) (cited: 5) (cited: 16)
28.
S. Bolotin, R. S. MacKay, “Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem”, Celestial Mech. Dynam. Astronom., 94:4 (2006), 433–449 (cited: 12) (cited: 9) (cited: 14)
29.
S. Bolotin, P. H. Rabinowitz, “A note on heteroclinic solutions of mountain pass type for a class of nonlinear elliptic PDE's”, Contributions to nonlinear analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkhäuser, Basel, 2006, 105–114 (cited: 7)
30.
S. Bolotin, “Shadowing chains of collision orbits”, Discrete Contin. Dyn. Syst., 14:2 (2006), 235–260 (cited: 7) (cited: 14)
2005
31.
S. Bolotin, “Shadowing chains of collision orbits for the elliptic 3-body problem”, SPT 2004 – Symmetry and perturbation theory, World Sci. Publ., Hackensack, NJ, 2005, 51–58
32.
S. Bolotin, “Second species periodic orbits of the elliptic 3 body problem”, Celestial Mech. Dynam. Astronom., 93:1-4 (2005), 343–371 (cited: 10) (cited: 5) (cited: 11)
2004
33.
S. Bolotin, A. Delshams, R. Ramírez-Ros, “Persistence of homoclinic orbits for billiards and twist maps”, Nonlinearity, 17:4 (2004), 1153–1177 (cited: 7) (cited: 5) (cited: 7)
2003
34.
M. L. Bertotti, S. V. Bolotin, “Chaotic trajectories for natural systems on a torus”, Discrete Contin. Dyn. Syst., 9:5 (2003), 1343–1357 (cited: 1) (cited: 2)
35.
S. V. Bolotin, P. Negrini, “Chaotic behavior in the 3-center problem”, J. Differential Equations, 190:2 (2003), 539–558 (cited: 9) (cited: 9)
36.
S. V. Bolotin, R. S. MacKay, “Isochronous oscillations”, Localization and energy transfer in nonlinear systems, eds. L. Vazquez, R. S. MacKay, M.-P. Zorzano, World Sci., 2003, 217–224
2002
37.
S. Bolotin, A. Delshams, Yu. Fedorov, R. Ramírez-Ros, “Bi-asymptotic billiard orbits inside perturbed ellipsoids”, Progress in nonlinear science (Nizhny Novgorod, 2001), v. 1, RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, 48–62
38.
S. V. Bolotin, P. H. Rabinowitz, “Some geometrical conditions for the existence of chaotic geodesics on a torus”, Ergodic Theory Dynam. Systems, 22:5 (2002), 1407–1428 (cited: 3) (cited: 2) (cited: 4)
39.
S. Bolotin, P. Negrini, “Global regularization for the $n$-center problem on a manifold”, Discrete Contin. Dyn. Syst., 8:4 (2002), 873–892 (cited: 2) (cited: 7)
2001
40.
S. V. Bolotin, “Symbolic dynamics near minimal hyperbolic invariant tori of Lagrangian systems”, Nonlinearity, 14:5 (2001), 1123–1140 (cited: 7) (cited: 7) (cited: 7)
41.
S. V. Bolotin, P. Negrini, “Regularization and topological entropy for the spatial $n$-center problem”, Ergodic Theory Dynam. Systems, 21:2 (2001), 383–399 (cited: 15)
2000
42.
M. L. Bertotti, S. V. Bolotin, “Kinetic energy and Lyapunov stability of equilibria of natural Lagrangian systems”, International Conference on Differential Equations (Berlin, 1999), v. 1, 2, World Sci. Publ., River Edge, NJ, 2000, 1155–1157
43.
S. V. Bolotin, R. S. Mackay, “Periodic and chaotic trajectories of the second species for the $n$-centre problem”, Celestial Mech. Dynam. Astronom., 77:1 (2000), 49–75 (cited: 26) (cited: 20) (cited: 26)
44.
S. V. Bolotin, D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:4 (2000), 401–412 (cited: 7) (cited: 27) (cited: 30)
45.
S. V. Bolotin, “Infinite number of homoclinic orbits to hyperbolic invariant tori of Hamiltonian systems”, Regul. Chaotic Dyn., 5:2 (2000), 139–156 (cited: 1) (cited: 9) (cited: 10)
46.
M. L. Bertotti, S. V. Bolotin, “On the influence of the kinetic energy on the stability of equilibria of natural Lagrangian systems”, Arch. Ration. Mech. Anal., 152:1 (2000), 65–79 (cited: 2) (cited: 3) (cited: 3)
1999
47.
S. V. Bolotin, “Heteroclinic chains of skew product Hamiltonian systems”, Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533, Kluwer Acad. Publ., Dordrecht, 1999, 13–25 (cited: 11)
48.
S. V. Bolotin, P. H. Rabinowitz, “Minimal heteroclinic geodesics for the $n$-torus”, Calc. Var. Partial Differential Equations, 9:2 (1999), 125–139 (cited: 3) (cited: 3)
49.
S. Bolotin, D. Treschev, “Unbounded growth of energy in nonautonomous Hamiltonian systems”, Nonlinearity, 12:2 (1999), 365–388 (cited: 52) (cited: 30) (cited: 48)
1998
50.
M. L. Bertotti, S. V. Bolotin, “Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields”, Ann. Mat. Pura Appl. (4), 174 (1998), 253–275 (cited: 5) (cited: 7)
51.
S. V. Bolotin, P. H. Rabinowitz, “Heteroclinic geodesics for a class of manifolds with symmetry”, Regul. Chaotic Dyn., 3:4 (1998), 49–62 (cited: 4) (cited: 4)
52.
S. V. Bolotin, “Connecting orbits of Hamiltonian systems”, Nonlinear functional analysis and applications to differential equations (Trieste, 1997), World Sci. Publ., River Edge, NJ, 1998, 36–59
53.
S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a Hamiltonian system on a torus”, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:3 (1998), 541–570
54.
M. L. Bertotti, S. V. Bolotin, “Homoclinic solutions of almost periodic Hamiltonian systems”, International Conference on Differential Equations (Lisboa, 1995), World Sci. Publ., River Edge, NJ, 1998, 272–276
55.
S. V. Bolotin, P. H. Rabinowitz, “A variational construction of chaotic trajectories for a reversible Hamiltonian system”, J. Differential Equations, 148:2 (1998), 364–387 (cited: 23) (cited: 17) (cited: 26)
1997
56.
S. Bolotin, P. Negrini, “A variational criterion for nonintegrability”, Russian J. Math. Phys., 5:4 (1997), 415–436 (cited: 10) (cited: 13) (cited: 16)
57.
M. L. Bertotti, S. V. Bolotin, “Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8:2 (1997), 93–100 (cited: 2)
58.
S. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029 (cited: 29) (cited: 23) (cited: 28)
59.
S. Bolotin, “Homoclinic trajectories of invariant sets of Hamiltonian systems”, NoDEA Nonlinear Differential Equations Appl., 4:3 (1997), 359–389 (cited: 12)
1995
60.
S. V. Bolotin, “On supports of minimal invariant measures of Hamiltonian systems”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1995, no. 6, 38–45
61.
S. Bolotin, “Homoclinic trajectories of time dependent Hamiltonian systems”, Variational and local methods in the study of Hamiltonian systems (Trieste, 1994), World Sci. Publ., River Edge, NJ, 1995, 1–16
62.
S. V. Bolotin, “Invariant sets of Hamiltonian systems and variational methods”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 1169–1178
63.
S. V. Bolotin, V. V. Kozlov, “Symmetry fields of geodesic flows”, Russian J. Math. Phys., 3:3 (1995), 279–295
64.
S. Bolotin, P. Negrini, “Asymptotic solutions of Lagrangian systems with gyroscopic forces”, NoDEA Nonlinear Differential Equations Appl., 2:4 (1995), 417–444 (cited: 7)
65.
M. L. Bertotti, S. V. Bolotin, “A variational approach for homoclinics in almost periodic Hamiltonian systems”, Comm. Appl. Nonlinear Anal., 2:4 (1995), 43–57
66.
S. V. Bolotin, “Homoclinic orbits in invariant tori of Hamiltonian systems”, Dynamical systems in classical mechanics, Amer. Math. Soc. Transl. Ser. 2, 168, Amer. Math. Soc., Providence, RI, 1995, 21–90
67.
M. L. Bertotti, S. V. Bolotin, “Homoclinic solutions of quasiperiodic Lagrangian systems”, Differential Integral Equations, 8:7 (1995), 1733–1760
1994
68.
S. Bolotin, “Variational criteria for nonintegrability and chaos in Hamiltonian systems”, Hamiltonian mechanics (Toruń, 1993), NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179
1993
69.
S. V. Bolotin, P. Negrini, “Asimptoticheskie traektorii giroskopicheskikh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1993, no. 6, 66–75
70.
S. V. Bolotin, “Homoclinic orbits of geodesic flows on surfaces”, Russian J. Math. Phys., 1:3 (1993), 275–288
1992
71.
S. V. Bolotin, “Dvoyakoasimptoticheskie traektorii minimalnykh geodezicheskikh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 1, 92–96 (cited: 3)
72.
S. V. Bolotin, “Homoclinic trajectories to minimal tori of Lagrangian systems”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 6, 34–41
73.
S. V. Bolotin, “Variational methods for constructing chaotic motions in the dynamics of a rigid body”, J. Appl. Math. Mech., 56:2 (1992), 198–205 (cited: 3) (cited: 3)
74.
S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 (cited: 16) (cited: 2) (cited: 12)
75.
S. V. Bolotin, “Letter to the editors: “Variational methods for constructing chaotic motions in the dynamics of a rigid body””, J. Appl. Math. Mech., 56:6 (1992), 959
1990
76.
S. V. Bolotin, “Motions that are doubly asymptotic to invariant tori in the theory of the perturbations of Hamiltonian systems”, J. Appl. Math. Mech., 54:3 (1990), 412–417 (cited: 1) (cited: 1)
77.
S. V. Bolotin, “Integriruemye bilyardy Birkgofa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1990, no. 2, 33–36 (cited: 8)
78.
S. V. Bolotin, “Dvoyakoasimptoticheskie traektorii i usloviya integriruemo sti gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1990, no. 1, 55–63 (cited: 2)
1988
79.
S. V. Bolotin, “O pervykh integralakh sistem s uprugimi otrazheniyami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1988, no. 6, 42–45 (cited: 2)
S. V. Bolotin, “Periodic solutions of systems with gyroscopic forces”, J. Appl. Math. Mech., 51:4 (1987), 535–537 (cited: 2)
1986
82.
S. V. Bolotin, “The splitting of asymptotic surfaces”, Geometriya, differentsialnye uravneniya i mekhanika (Moskva, 1985), Izd-vo MGU, M., 1986, 52–53
83.
S. V. Bolotin, “Zamechanie o metode Rausa i gipoteze Gertsa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 5, 51–53 (cited: 2)
84.
S. V. Bolotin, “Uslovie neintegriruemosti po Liuvillyu gamiltonovykh sistem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1986, no. 3, 58–64 (cited: 1)
1984
85.
S. V. Bolotin, “The effect of singularities of the potential energy on the integrability of mechanical systems”, J. Appl. Math. Mech., 48:3 (1984), 255–260 (cited: 2) (cited: 7)
86.
S. V. Bolotin, “O pervykh integralakh sistem s giroskopicheskimi silami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 6, 75–82 (cited: 10)
87.
S. V. Bolotin, “Neintegriruemost zadachi $n$ tsentrov pri $n>2$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1984, no. 3, 65–68 (cited: 11)
1983
88.
S. V. Bolotin, “Suschestvovanie gomoklinicheskikh dvizhenii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1983, no. 6, 98–103 (cited: 1)
1980
89.
V. V. Kozlov, S. V. Bolotin, “Ob asimptoticheskikh resheniyakh uravnenii dinamiki”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1980, no. 4, 84–89
1978
90.
S. V. Bolotin, V. V. Kozlov, “Libration in systems with many degrees of freedom”, J. Appl. Math. Mech., 42:2 (1978), 256–261 (cited: 15) (cited: 26)
91.
S. V. Bolotin, “Libratsionnye dvizheniya naturalnykh dinamicheskikh si stem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1978, no. 6, 72–77
Selected issues of mathematics and mechanics, Collected papers. On the occasion of the 70th birthday of Academician Valery Vasil'evich Kozlov, Trudy MIAN, 310, ed. D. V. Treschev, S. V. Bolotin, A. G. Kulikovskii, I. A. Taimanov, 2020, 341 с. http://mi.mathnet.ru/book1805