Publications in Math-Net.Ru |
|
2020 |
1. |
M. G. Peretyat'kin, “The property of being a model complete theory is preserved by Cartesian extensions”, Sib. Èlektron. Mat. Izv., 17 (2020), 1540–1551 |
2. |
M. G. Peretyat'kin, “The Tarski-Lindenbaum algebra of the class of all prime strongly constructivizable models of algorithmic dimension one”, Sib. Èlektron. Mat. Izv., 17 (2020), 913–922 |
|
2015 |
3. |
M. G. Peretyat'kin, “First-order combinatorics and model-theoretical properties that can be distinct for mutually interpretable theories”, Mat. Tr., 18:2 (2015), 61–92 ; Siberian Adv. Math., 26:3 (2016), 196–214 |
|
1992 |
4. |
M. G. Peretyat'kin, “Semantic universality of theories over a superlist”, Algebra Logika, 31:1 (1992), 47–73 |
|
1991 |
5. |
M. G. Peretyat'kin, “Analogues of Rice's theorem for semantic classes of
propositions”, Algebra Logika, 30:5 (1991), 517–539 |
6. |
M. G. Peretyat'kin, “Semantically universal classes of models”, Algebra Logika, 30:4 (1991), 414–431 |
7. |
M. G. Peretyat'kin, “Uncountably categorical quasisuccession of Morley rank 3”, Algebra Logika, 30:1 (1991), 74–89 ; Algebra and Logic, 30:1 (1991), 51–61 |
|
1989 |
8. |
M. G. Peretyat'kin, “The similarity of properties of recursively enumerable and
finitely axiomatizable theories”, Dokl. Akad. Nauk SSSR, 308:4 (1989), 788–791 ; Dokl. Math., 40:2 (1990), 372–375 |
|
1982 |
9. |
M. G. Peretyat'kin, “Calculations on Turing machines in finitely axiomatizable
theories”, Algebra Logika, 21:4 (1982), 410–441 |
|
1980 |
10. |
M. G. Peretyat'kin, “Example of an $\omega _{1}$-categorical complete finitely
axiomatizable theory”, Algebra Logika, 19:3 (1980), 314–347 |
11. |
M. G. Peretyat'kin, “A theory with three countable models”, Algebra Logika, 19:2 (1980), 224–235 |
|
1978 |
12. |
M. G. Peretyat'kin, “A criterion of strong constructivizability of a homogeneous
model”, Algebra Logika, 17:4 (1978), 436–454 |
|
1973 |
13. |
M. G. Peretyat'kin, “Complete theories with a finite number of countable models”, Algebra Logika, 12:5 (1973), 550–576 |
14. |
M. G. Peretyat'kin, “A strongly constructive model without elementary submodels and
extensions”, Algebra Logika, 12:3 (1973), 312–322 |
15. |
M. G. Peretyat'kin, “Every recursively enumerable extension of a theory of linear order
has a constructive model”, Algebra Logika, 12:2 (1973), 211–219 |
|
1971 |
16. |
M. G. Peretyat'kin, “Strongly constructive models and enumerations of the Boolean
algebra of recursive sets”, Algebra Logika, 10:5 (1971), 535–557 |
|
|
|
1990 |
17. |
S. S. Goncharov, Yu. L. Ershov, M. M. Lavrent'ev, L. L. Maksimova, T. G. Mustafin, S. P. Novikov, E. A. Palyutin, M. G. Peretyat'kin, Yu. G. Reshetnyak, D. M. Smirnov, “Asan Dabsovich Taimanov (obituary)”, Uspekhi Mat. Nauk, 45:5(275) (1990), 171–173 ; Russian Math. Surveys, 45:5 (1990), 213–215 |
|