Lazarev, Nyurgun Petrovich

Statistics Math-Net.Ru
Total publications: 27
Scientific articles: 27

Number of views:
This page:1099
Abstract pages:4965
Full texts:1679
Senior Researcher
Candidate of physico-mathematical sciences
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. Nyurgun P. Lazarev, Galina M. Semenova, Natalya A. Romanova, “On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  28–41  mathnet  isi
2. E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, Sib. Zh. Ind. Mat., 24:1 (2021),  103–119  mathnet  elib; J. Appl. Industr. Math., 15:1 (2021), 129–140  scopus
3. N. P. Lazarev, “Equilibrium problem for an thermoelastic Kirchhoff–Love plate with a nonpenetration condition for known configurations of crack edges”, Sib. Èlektron. Mat. Izv., 17 (2020),  2096–2104  mathnet  isi
4. N. P. Lazarev, G. M. Semenova, “Equilibrium problem for a Timoshenko plate with a geometrically nonlinear condition of nonpenetration for a vertical crack”, Sib. Zh. Ind. Mat., 23:3 (2020),  65–76  mathnet  elib; J. Appl. Industr. Math., 14:3 (2020), 532–540  scopus
5. Nyurgun P. Lazarev, Vladimir V. Everstov, Natalya A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, J. Sib. Fed. Univ. Math. Phys., 12:6 (2019),  674–686  mathnet  isi
6. N. P. Lazarev, G. M. Semenova, “Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack”, Sib. Zh. Ind. Mat., 22:1 (2019),  53–62  mathnet  elib; J. Appl. Industr. Math., 13:1 (2019), 76–84  scopus
7. N. P. Lazarev, S. Das, M. P. Grigoryev, “Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack”, Sib. Èlektron. Mat. Izv., 15 (2018),  1485–1497  mathnet
8. N. P. Lazarev, I. Hiromichi, P. V. Sivtsev, I. M. Tikhonova, “On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack”, Mathematical notes of NEFU, 25:1 (2018),  38–49  mathnet  elib
9. N. V. Neustroeva, N. P. Lazarev, “The derivative of the energy functional in an equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, Sib. Zh. Ind. Mat., 20:2 (2017),  59–70  mathnet  elib; J. Appl. Industr. Math., 11:2 (2017), 252–262  scopus
10. N. P. Lazarev, V. V. Èverstov, “An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body”, Mathematical notes of NEFU, 24:4 (2017),  37–51  mathnet  elib
11. N. V. Neustroeva, N. P. Lazarev, “Junction problem for Euler–Bernoulli and Timoshenko elastic beams”, Sib. Èlektron. Mat. Izv., 13 (2016),  26–37  mathnet
12. N. P. Lazarev, “Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack”, Mathematical notes of NEFU, 23:2 (2016),  51–64  mathnet  elib
13. N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, Sib. J. Pure and Appl. Math., 16:1 (2016),  90–105  mathnet; J. Math. Sci., 228:4 (2018), 409–420
14. N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack”, Sib. Èlektron. Mat. Izv., 12 (2015),  300–308  mathnet
15. N. P. Lazarev, “The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, 1,  32–45  mathnet
16. Nyurgun P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  53–62  mathnet
17. N. P. Lazarev, “The Griffith formula for a Timoshenko-type plate with a curvilinear track”, Sib. Zh. Ind. Mat., 16:2 (2013),  98–108  mathnet  mathscinet
18. N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013),  91–104  mathnet; J. Math. Sci., 203:4 (2014), 527–539
19. N. P. Lazarev, “Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, 6(107),  100–115  mathnet
20. N. P. Lazarev, “The problem of equilibrium of a shallow Timoshenko-type shell containing a through-thickness crack”, Sib. Zh. Ind. Mat., 15:3 (2012),  58–69  mathnet  mathscinet; J. Appl. Industr. Math., 7:1 (2013), 78–88
21. N. P. Lazarev, “An equilibrium problem for a Timoshenko plate with a through crack”, Sib. Zh. Ind. Mat., 14:4 (2011),  32–43  mathnet  mathscinet
22. N. P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Sib. Zh. Vychisl. Mat., 14:4 (2011),  397–408  mathnet; Num. Anal. Appl., 4:4 (2011), 309–318  scopus
23. N. P. Lazarev, “Extreme Crack Shapes in a Plate Timoshenko Model”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011),  49–62  mathnet; J. Math. Sci., 195:6 (2013), 815–826
24. N. P. Lazarev, T. S. Popova, “Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:2 (2011),  77–88  mathnet; J. Math. Sci., 188:4 (2013), 398–409
25. N. P. Lazarev, “The method of smooth domains in problems of the two-dimensional theory of elasticity for a domain with a nonsmooth cut”, Sib. Zh. Ind. Mat., 6:3 (2003),  103–113  mathnet  mathscinet  zmath
26. N. P. Lazarev, “Differentiation of the energy functional for the problem of the equilibrium of a body containing a crack, with Signorini boundary conditions”, Sib. Zh. Ind. Mat., 5:2 (2002),  139–147  mathnet  mathscinet  zmath
27. N. P. Lazarev, M. P. Fateev, “Diffusion in a lattice with static disorder”, TMF, 89:3 (1991),  465–472  mathnet; Theoret. and Math. Phys., 89:3 (1991), 1342–1347  isi

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021