Lazarev, Nyurgun Petrovich

Statistics Math-Net.Ru
Total publications: 24
Scientific articles: 24

Number of views:
This page:1033
Abstract pages:4518
Full texts:1535
Senior Researcher
Candidate of physico-mathematical sciences
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. N. P. Lazarev, G. M. Semenova, “Equilibrium problem for a Timoshenko plate with a geometrically nonlinear condition of nonpenetration for a vertical crack”, Sib. Zh. Ind. Mat., 23:3 (2020),  65–76  mathnet; J. Appl. Industr. Math., 14:3 (2020), 532–540  scopus
2. Nyurgun P. Lazarev, Vladimir V. Everstov, Natalya A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, J. Sib. Fed. Univ. Math. Phys., 12:6 (2019),  674–686  mathnet  isi
3. N. P. Lazarev, G. M. Semenova, “Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack”, Sib. Zh. Ind. Mat., 22:1 (2019),  53–62  mathnet  elib; J. Appl. Industr. Math., 13:1 (2019), 76–84  scopus
4. N. P. Lazarev, S. Das, M. P. Grigoryev, “Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack”, Sib. Èlektron. Mat. Izv., 15 (2018),  1485–1497  mathnet
5. N. P. Lazarev, I. Hiromichi, P. V. Sivtsev, I. M. Tikhonova, “On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack”, Mathematical notes of NEFU, 25:1 (2018),  38–49  mathnet  elib
6. N. V. Neustroeva, N. P. Lazarev, “The derivative of the energy functional in an equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, Sib. Zh. Ind. Mat., 20:2 (2017),  59–70  mathnet  elib; J. Appl. Industr. Math., 11:2 (2017), 252–262  scopus
7. N. P. Lazarev, V. V. Èverstov, “An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body”, Mathematical notes of NEFU, 24:4 (2017),  37–51  mathnet  elib
8. N. V. Neustroeva, N. P. Lazarev, “Junction problem for Euler–Bernoulli and Timoshenko elastic beams”, Sib. Èlektron. Mat. Izv., 13 (2016),  26–37  mathnet
9. N. P. Lazarev, “Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack”, Mathematical notes of NEFU, 23:2 (2016),  51–64  mathnet  elib
10. N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, Sib. J. Pure and Appl. Math., 16:1 (2016),  90–105  mathnet; J. Math. Sci., 228:4 (2018), 409–420
11. N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack”, Sib. Èlektron. Mat. Izv., 12 (2015),  300–308  mathnet
12. N. P. Lazarev, “The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, 1,  32–45  mathnet
13. Nyurgun P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  53–62  mathnet
14. N. P. Lazarev, “The Griffith formula for a Timoshenko-type plate with a curvilinear track”, Sib. Zh. Ind. Mat., 16:2 (2013),  98–108  mathnet  mathscinet
15. N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013),  91–104  mathnet; J. Math. Sci., 203:4 (2014), 527–539
16. N. P. Lazarev, “Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, 6(107),  100–115  mathnet
17. N. P. Lazarev, “The problem of equilibrium of a shallow Timoshenko-type shell containing a through-thickness crack”, Sib. Zh. Ind. Mat., 15:3 (2012),  58–69  mathnet  mathscinet; J. Appl. Industr. Math., 7:1 (2013), 78–88
18. N. P. Lazarev, “An equilibrium problem for a Timoshenko plate with a through crack”, Sib. Zh. Ind. Mat., 14:4 (2011),  32–43  mathnet  mathscinet
19. N. P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Sib. Zh. Vychisl. Mat., 14:4 (2011),  397–408  mathnet; Num. Anal. Appl., 4:4 (2011), 309–318  scopus
20. N. P. Lazarev, “Extreme Crack Shapes in a Plate Timoshenko Model”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011),  49–62  mathnet; J. Math. Sci., 195:6 (2013), 815–826
21. N. P. Lazarev, T. S. Popova, “Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:2 (2011),  77–88  mathnet; J. Math. Sci., 188:4 (2013), 398–409
22. N. P. Lazarev, “The method of smooth domains in problems of the two-dimensional theory of elasticity for a domain with a nonsmooth cut”, Sib. Zh. Ind. Mat., 6:3 (2003),  103–113  mathnet  mathscinet  zmath
23. N. P. Lazarev, “Differentiation of the energy functional for the problem of the equilibrium of a body containing a crack, with Signorini boundary conditions”, Sib. Zh. Ind. Mat., 5:2 (2002),  139–147  mathnet  mathscinet  zmath
24. N. P. Lazarev, M. P. Fateev, “Diffusion in a lattice with static disorder”, TMF, 89:3 (1991),  465–472  mathnet; Theoret. and Math. Phys., 89:3 (1991), 1342–1347  isi

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020