RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Kharlamov, Mikhail Pavlovich

Total publications: 165 (157)
in MathSciNet: 58 (58)
in zbMATH: 58 (57)
in Web of Science: 17 (17)
in Scopus: 26 (26)
Cited articles: 48
Citations in Math-Net.Ru: 68
Citations in Web of Science: 73
Citations in Scopus: 10
Presentations: 9

Number of views:
This page:1758
Abstract pages:2836
Full texts:784
References:277
Kharlamov, Mikhail Pavlovich
Professor
Doctor of physico-mathematical sciences (1983)
Speciality: 01.02.01 (Theoretical mechanics)
Birth date: 13.08.1953
E-mail:
Website: http://vlgr.ranepa.ru/pp/hmp
Keywords: rigid body dynamics, exact solutions, topological analysis
UDC: 517.938.5, 531.38
MSC: 70E17, 70G40

Subject:

analytical dynamics, Hamiltonian systems, phase topology

   
Main publications:
  1. M. P. Kharlamov, “Topological analysis and Boolean functions: II. Application to new algebraic solutions”, Nelin. Dinam., 7:1 (2011), 25–51  mathnet  adsnasa  hrarxiv  elib  scopus
  2. M. P. Kharlamov, “Topological analysis and Boolean functions. I. Methods and application to classical systems”, Nelin. Dinam., 6:4 (2010), 769–805  mathnet  adsnasa  hrarxiv  elib
  3. M. P. Kharlamov, “Bifurcation diagrams and critical subsystems of the Kowalevski gyrostat in two constant fields”, Hiroshima Mathematical Journal, 39:3 (2009), 327–350  mathscinet  zmath  adsnasa  hrarxiv  isi  elib  scopus
  4. M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class”, Regular and Chaotic Dynamics, 12:3 (2007), 267–280  mathnet  crossref  mathscinet  zmath  adsnasa  hrarxiv  isi  elib  scopus
  5. M. P. Kharlamov, A. Y. Savushkin, “Explicit integration of one problem of motion of the generalized Kowalevski top”, Mechanics Research Communications, 2005, no. 32, 547–552  crossref  mathscinet  zmath  adsnasa  hrarxiv  isi  elib  scopus
  6. M. P. Kharlamov, “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regular and Chaotic Dynamics, 10:4 (2005), 381–398  mathnet  crossref  mathscinet  zmath  adsnasa  hrarxiv  isi  elib  scopus
  7. M. P. Kharlamov, Topological analysis of integrable problems of rigid body dynamics, LSU Publ., Leningrad, 1988 , 200 pp.  mathscinet  adsnasa  hrarxiv
  8. M. P. Kharlamov, “Gyrosystems”, Mekh. Tverd. Tela, 1987, no. 19, 42–54  mathscinet  zmath  adsnasa
  9. M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805  mathnet  mathscinet  zmath  adsnasa  hrarxiv  scopus
  10. M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. and Mech., 47 (1983), 737–743  crossref  mathscinet  zmath  adsnasa  hrarxiv  scopus
  11. M. P. Kharlamov, “Regions of possible motion in mechanical systems”, Soviet Physics Doklady, 27 (1982), 921–923  mathnet  mathscinet  zmath  hrarxiv
  12. M. P. Kharlamov, “Phase topology of one integrable case of the rigid body motion”, Mekh. Tverd. Tela, 1979, no. 11, 50–64  mathscinet  zmath  adsnasa  hrarxiv
  13. M. P. Kharlamov, “Characteristic class of a bundle and the existence of a global Routh function”, Funct. Anal. Appl., 11:1 (1977), 80–81  mathnet  crossref  mathscinet  zmath  adsnasa  hrarxiv  scopus
  14. M. P. Kharlamov, “On a conditionally linear integral of the equation of motion for a rigid body having a fixed point”, Mechanics of Solids, 11:3 (1976), 6-13  adsnasa  adsnasa
  15. M. P. Kharlamov, “Reduction in mechanical systems with symmetry”, Mekh. Tverd. Tela, 1976, no. 8, 4–18  hrarxiv

http://www.mathnet.ru/eng/person26804
http://scholar.google.com/citations?user=o0BuFrEAAAAJ&hl=en
http://zbmath.org/authors/?q=ai:kharlamov.mikhail-p
https://mathscinet.ams.org/mathscinet/MRAuthorID/205698
http://elibrary.ru/author_items.asp?authorid=148519
http://orcid.org/0000-0002-6043-6215
http://www.researcherid.com/rid/P-7571-2014
http://www.scopus.com/authid/detail.url?authorId=8503432000
https://www.researchgate.net/profile/Mikhail_Kharlamov
https://arxiv.org/a/kharlamov_m_1

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2016
1. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the KowalevskiSokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath  isi  scopus (cited: 2)

   2017
2. M. P. Kharlamov, P. E. Ryabov, I. I. Kharlamova, “Topological Atlas of the Kovalevskaya–Yehia Gyrostat”, J. Math. Sci. (N. Y.), 227:3 (2017), 241–386  mathnet  crossref  mathscinet  zmath  scopus (cited: 1)

   2015
3. M. P. Kharlamov, “Phase topology of one system with separated variables and singularities of the symplectic structure”, Journal of Geometry and Physics, 87 (2015), 248–265  crossref  mathscinet  zmath  isi (cited: 1)

   2017
4. M. P. Kharlamov, P. E. Ryabov, “Topological atlas of the Kovalevskaya top in a double field”, J. Math. Sci., 223:6 (2017), 775–809  mathnet  crossref  mathscinet  elib

   2014
5. M. P. Kharlamov, “Extensions of the Appelrot classes for the generalized gyrostat in a double force field”, Regular and Chaotic Dynamics, 19:2 (2014), 226–244  mathnet (cited: 4)  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib (cited: 3)
6. M. P. Kharlamov, “Topological invariants of almost Hamiltonian systems with singularities of symplectic structure”, 10th AIMS International Conference on Dynamical Systems, Differential Equations and Application. Abstracts (July 7 – 11, 2014), Universidad Autonoma de Madrid, Madrid, Spain, 2014, 97–97  crossref
7. M. P. Kharlamov, I. I. Kharlamova, “Topological atlases of integrable Hamiltonian systems”, 10th AIMS International Conference on Dynamical Systems, Differential Equations and Application. Abstracts (July 7 – 11, 2014), Universidad Autonoma de Madrid, Madrid, Spain, 2014, 195–195  crossref
8. I. I. Kharlamova, M. P. Kharlamov, A. Yu. Ryabov P.E., Savushkin, “Creating topological atlases in integrable problems of dynamics”, Voronezh Winter Math. Schoool-2014. Book of Abstracts (January 26-30, 2014), VSU, Voronezh, 2014, 389–393  crossref
9. M. P. Kharlamov, E. G. Shvedov, “Computer system of vizualization of topological invariants”, Pontryagin Readings XXV. Book of Abstracts (May 3–9, 2014), VSU, Voronezh, 2014, 183–184  crossref
10. M. P. Kharlamov, P. E. Ryabov, I. I. Kharlamova, A. Y. Savuskin, E. G. Shvedov, Topological atlas of the Kowalevski–Yehia gyrostat: analytical results and topological analysis, 2014 , 128 pp., arXiv: 1411.6248
11. M. P. Kharlamov, P. E. Ryabov, “Method of critical subsystems as a way to calculate the types of critical points in integrable systems with three degrees of freedom”, International Conference “Hamiltonian Dynamics, Nonautonomous Systems, and Patterns in PDE's” dedicated to the 70th birthday of Professors Lev Lerman and Albert Morozov. Book of Abstracts. (December 10-15, 2014), Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia, 2014, 25–26  crossref

   2013
12. M. P. Kharlamov, “Phase topology of one system with separated variables and singularities of the symplectic structure”, Preprint, 2013, 29  crossref  adsnasa  hrarxiv  scopus
13. M. P. Kharlamov, I. I. Kharlamova, A. Y. Savushkin, “Vizualization of one class of two frequency motions of a rigid body”, Mekh. Tverd. Tela, 2013, no. 43, 19–28
14. M. P. Kharlamov, P. E. Ryabov, I. I. Kharlamova, “Complete topological atlas of an integrable system with two or three degrees of freedom”, Int. Conference on mathematical control theory and mechanics. Book of Abstracts (July 5–9, 2013), Vladimir State University, Suzdal, 2013, 232–234
15. M. P. Kharlamov, P. V. Ryabov, “New results in the study of the phase topology of generalized Kowalevski gyrostat”, 8th International Symposium on Classical and Celestial Mechanics, CCMECH8. Book of abstracts (Sept 25–29, 2013.), Wydawnictwo Collegium Mazova, Siedlce, Poland, 2013, 29–30
16. M. P. Kharlamov, “Complete topological atlases of some integrable systems with two and three degrees of freedom”, IV International Conference Geometry, Dynamics, Integrable Systems. Book of Abstracts. (June 10–14, 2013.), RCD, Izhevsk, 2013
17. M. P. Kharlamov, “Complete topological atlas of an integrable system with two or three degrees of freedom”, Pontryagin Readings XXIV. Book of Abstracts (May 3–9, 2013), VSU, Voronezh, 2013, 210–211
18. Astafurova O. A., Ivanova T. B., Kleitman A.L., Tyumentsev I.O., Kharlamov M.P., Shvedov E. G., “Baza dannykh Istoriya naselennykh mest Volgogradskoi oblasti v 16 - nachale 21 vv.”, Nauchnyi vestnik Volgogradskoi akademii gosudarstvennoi sluzhby. Seriya: ekonomika, 2:10 (2013), 37-41  elib

   2012
19. P. E. Ryabov, M. P. Kharlamov, “Classification of singularities in the problem of motion of the Kovalevskaya top in a double force field”, Sbornik: Mathematics, 203:2 (2012), 257–287  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 7)  scopus (cited: 7)
20. M. P. Kharlamov, P. E. Ryabov, “Net diagrams for the Fomenko invariant in the integrable system with three degrees of freedom”, Doklady Mathematics, 86:3 (2012), 839–842  crossref  zmath  zmath  isi (cited: 2)  isi (cited: 2)  elib (cited: 2)
21. P. E. Ryabov, G. E. Smirnov, M. P. Kharlamov, “The atlas of the diagrams for the generalization of the 4th Appelrot class of especially remarkable motions to a gyrostat in a double force field”, Mekh. Tverd. Tela, 2012, no. 42, 62–76  zmath  adsnasa  hrarxiv
22. M. P. Kharlamov, “Analytical classification of the permanent rotations of the Kowalevski – Yehia gyrostat”, Mekh. Tverd. Tela, 2012, no. 42, 47–61  zmath  adsnasa  hrarxiv
23. M. P. Kharlamov, P. E. Ryabov, I. I. Kharlamova, “The Kowalevski–Yehia gyrostat: constructor of invariants”, The International Conference on Differential Equations and Dynamical Systems. Book of Abstracts (June 29–July 4,2012), Vladimir State University, Suzdal, 2012, 171–172
24. M. P. Kharlamov, I. I. Kharlamova, E. G. Shvedov, “Critical subsystems as a tool to classify bifurcation diagrams of integral mappings”, Pontryagin Readings XXIII. Book of Abstracts (May 3–9, 2012), VSU, Voronezh, 2012, 190–190
25. M. P. Kharlamov, “Topology of algebraically solved systems and Boolean functions”, International Topological Conference “Alexandroff Readings”. Book of Abstracts (May 21–25, 2012.), MSU Press, Moscow, 2012, 36–37
26. M. P. Kharlamov, P. E. Ryabov, “The Kowalevski top in a double force field: applying the critical subsystems method”, The International Conference on Differential Equations and Dynamical Systems. Book of Abstracts (June 29–July 4,2012), Vladimir State University, Suzdal, 2012, 170–171
27. M. P. Kharlamov, P. E. Ryabov, “The critical subsystems method and Fomenko nets for the integrable top in a double force field”, Pontryagin Readings XXIII (Lomonosov Moscow State University, Voronezh State University and Steklov Mathematical Institute of Russian Academy of Sciences). Book of Abstracts (May 3–9, 2012), VSU, Voronezh, 2012, 189–189
28. M. P. Kharlamov, I. I. Kharlamova, Computer Technologies in Human Resource Management, Textbook, Volgograd Branch of RANEPA, Volgograd, 2012

   2011
29. M. P. Kharlamov, P. E. Ryabov, A. Y. Savushkin, G. E. Smirnov, “Types of critical points of the Kowalevski gyrostat in double field”, Mekh. Tverd. Tela, 2011, no. 41, 26–37  mathscinet  adsnasa  hrarxiv  scopus
30. M. P. Kharlamov, “Topological analysis and Boolean functions: II. Application to new algebraic solutions”, Nelin. Dinam., 7:1 (2011), 25–51  mathnet  adsnasa  hrarxiv  elib  scopus
31. M. P. Kharlamov, P. E. Ryabov, “Smale–Fomenko diagrams and rough topological invariants of the Kowalevski–Yehia case”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4, 40–59  mathnet  zmath  adsnasa  hrarxiv  elib
32. M. P. Kharlamov, I. I. Kharlamova, E. G. Shvedov, “Iso-energetic diagrams of the Kowalevski–Yehia gyrostat”, XI Int. Conference on stability, control and rigid body dynamics. Book of Abstracts (June 8–12, 2011), IAMM NASU, Donetsk, 2011, 117–120
33. M. P. Kharlamov, “Boolean functions and topology of the generalized Kowalevski top”, Int. Conference on mathematical control theory and mechanics. Book of Abstracts (July 1–5, 2011), Vladimir State University, Suzdal, 2011, 207–209
34. M. P. Kharlamov, “Iso-energetic fibrations of integral systems with three degrees of freedom”, Pontryagin Readings XXII. Book of Abstracts (May 3–9, 2011), VSU, Voronezh, 2011, 199–200

   2010
35. M. P. Kharlamov, A. Y. Savushkin, “Geometrical approach to variables separation in mechanical systems”, Vestn. Volgograd. Univ., 2010, no. 13, 47–74  adsnasa  hrarxiv  elib
36. M. P. Kharlamov, “Generalization of the 4th Appelrot class: the phase topology”, Mekh. Tverd. Tela, 2010, no. 40, 21–33  mathscinet  adsnasa  hrarxiv
37. M. P. Kharlamov, I. I. Kharlamova, E. G. Shvedov, “Bifurcation diagrams on isoenergetic levels of the Kowalevski–Yehia gyrostat”, Mekh. Tverd. Tela, 2010, no. 40, 77–90  mathscinet  adsnasa  hrarxiv
38. M. P. Kharlamov, “Topological analysis and Boolean functions. I. Methods and application to classical systems”, Nelin. Dinam., 6:4 (2010), 769–805  mathnet  adsnasa  hrarxiv  elib
39. P. E. Ryabov, M. P. Kharlamov, “Analytic classification of singularities in the generalized Kowalevski case”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 2, 19–28  mathnet  adsnasa  hrarxiv  elib
40. I. I. Kharlamova, M. P. Kharlamov, “Geometry of variables separation in some problems of dynamics”, Pontryagin Readings XXI. Book of Abstracts (May 3–9, 2010), VSU, Voronezh, 2010, 241–241
41. M. P. Kharlamov, P. E. Ryabov, “Topology of separated systems and linear Boolean maps”, II Int. Conf. Geometry, Dynamics, Integrable Systems, Belgrad, 2010. Book of Abstracts (7–13 September 2010), Serbian Ac.Sc., Belgrad, 2010, 18–19
42. M. P. Kharlamov, “Algebraically separable systems and Boolean functions”, Pontryagin Readings XXI. Book of Abstracts (May 3–9, 2010), VSU, Voronezh, 2010, 240–240
43. M. P. Kharlamov, A. Y. Savushkin, Elements of Pure Mathematics. Part II. Functions, limits, continuity, Textbook, “Mikhail”, Volgograd, 2010 , 64 pp.

   2009
44. M. P. Kharlamov, “Bifurcation diagrams and critical subsystems of the Kowalevski gyrostat in two constant fields”, Hiroshima Mathematical Journal, 39:3 (2009), 327–350  mathscinet  zmath  adsnasa  hrarxiv  isi (cited: 4)  elib (cited: 4)  scopus
45. M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class. II. Real solutions”, Regular and Chaotic Dynamics, 14:6 (2009), 621–634  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  elib (cited: 9)  scopus
46. M. P. Kharlamov, “Boolean functions and topology of algebraically integrable systems”, Russian Conference on dynamical systems and nanomechanics. Book of Abstracts (June 24–28, 2009), RCD Publ., Izhevsk, 2009, 12–12
47. M. P. Kharlamov, “Topology of algebraically integrable systems”, Pontryagin Readings XX. Book of Abstracts (May 3–9, 2009), VSU, Voronezh, 2009, 182–183
48. M. P. Kharlamov, A. Y. Savushkin, Elements of Pure Mathematics. Part I. Linear algebra, Textbook, “Mikhail”, Volgograd, 2009 , 64 pp.

   2008
49. M. P. Kharlamov, “Periodic motions of the Kowalevski gyrostat in two constant fields”, Journal of Physics A: Math. & Theor., 41:27 (2008), 275207 , 13 pp.  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib (cited: 1)  scopus
50. M. P. Kharlamov, “Separation of variables in one problem of motion of the generalized Kowalevski top”, Mechanics Research Communications, 35:4 (2008), 276–281  crossref  mathscinet  zmath  adsnasa  hrarxiv  isi (cited: 1)  elib (cited: 2)  scopus
51. M. P. Kharlamov, “Generalized 4th Appelrot class: analytical solutions”, Mekh. Tverd. Tela, 2008, no. 38, 20–30  mathscinet
52. M. P. Kharlamov, I. I. Kharlamova, “Application of computer algebra to investigation of periodic motions of the generalized Kowalevski gyrostat”, X Int. Conference on stability, control and rigid body dynamics. Book of Abstracts (June 5–10, 2008), IAMM NASU, Donetsk, 2008, 96–97
53. M. P. Kharlamov, “Bifurcation diagrams and critical motions of the Kowalevski gyrostat in two constant fields”, Stability, control and rigid body dynamics. X International Conference. Book of Abstracts (June 5–10, 2008), IAMM NASU, Donetsk, 2008, 127–128

   2007
54. M. P. Kharlamov, “Separation of variables in the generalized 4th Appelrot class”, Regular and Chaotic Dynamics, 12:3 (2007), 267–280  mathnet  crossref  mathscinet  zmath  adsnasa  hrarxiv  isi (cited: 8)  elib (cited: 10)  scopus
55. M. P. Kharlamov, “Singular periodic motions of the Kowalevski gyrostat in double field”, Mekh. Tverd. Tela, 2007, no. 37, 85–96  mathscinet
56. M. P. Kharlamov, “Critical subsystems of the Kowalevski gyrostat in two constant fields”, Nelin. Dinam., 3:3 (2007), 331–348  mathnet  elib
57. M. P. Kharlamov, I. I. Kharlamova, “General methods of constructing bifurcation diagrams of integrable Hamiltonian systems”, Voronezh Math. Schoool-2007. Book of Abstracts (January, 2007), VSU, Voronezh, 2007, 236–237
58. M. P. Kharlamov, “The Kowalevski top in double force field: detection of critical subsystems and their integration”, Classical Problems of Rigid Body Dynamics. International Euler Conference. Book of Abstracts (June 9–13, 2007), IAMM NASU, Donetsk, 2007, 93–94

   2006
59. M. P. Kharlamov, E. G. Shvedov, “On the existence of motions in the generalized 4th Appelrot class”, Regular and Chaotic Dynamics, 11:3 (2006), 337–342  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  elib (cited: 5)  scopus
60. M. P. Kharlamov, E. G. Shvedov, “Regions of existence of motions of the generalized Kovalevskaya top”, Vestn. Voronezh. Univ., 2006, no. 2, 241–246  elib
61. M. P. Kharlamov, “Domains of existence of critical motions of the generalized Kowalevski top and bifurcation diagrams”, Mekh. Tverd. Tela, 2006, no. 36, 13–22  mathscinet  hrarxiv
62. M. P. Kharlamov, “Singular periodic solutions of the generalized Delone case”, Mekh. Tverd. Tela, 2006, no. 36, 23–33  mathscinet
63. M. P. Kharlamov, “Generalized 4th Appelrot class: region of existence of motions and separation of variables”, Nelin. Dinam., 2:4 (2006), 453–472  mathnet  elib
64. M. P. Kharlamov, “Classification of motions in integrable systems with three degrees of freedom”, Voronezh Math. Schoool-2006. Book of Abstracts (Jan 26–30, 2006), VSU, Voronezh, 2006, 103–103

   2005
65. M. P. Kharlamov, A. Y. Savushkin, “Explicit integration of one problem of motion of the generalized Kowalevski top”, Mechanics Research Communications, 2005, no. 32, 547–552  crossref  mathscinet  zmath  adsnasa  hrarxiv  isi (cited: 2)  elib (cited: 3)  scopus
66. M. P. Kharlamov, “Bifurcation diagrams of the Kowalevski top in two constant fields”, Regular and Chaotic Dynamics, 10:4 (2005), 381–398  mathnet  crossref  mathscinet  zmath  adsnasa  hrarxiv  isi (cited: 20)  elib (cited: 29)  scopus
67. M. P. Kharlamov, D. B. Zotev, “Non-degenerate energy surfaces of rigid body in two constant fields”, Regular and Chaotic Dynamics, 10:1 (2005), 15–19  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  elib (cited: 8)  scopus
68. M. P. Kharlamov, A. Yu. Savushkin, “An explicit integration of a problem of motion of a generalized Kovalevskaya top”, Doklady Mathematics, 71:2 (2005), 298–299  mathnet  mathscinet  zmath  hrarxiv  isi  elib (cited: 5)  scopus
69. M. P. Kharlamov, “Bifurcation diagram of the generalization of the 4th Appelrot class”, Mekh. Tverd. Tela, 2005, no. 35, 38–48  mathscinet  adsnasa  hrarxiv
70. D. B. Zot'ev, M. P. Kharlamov, “Iso-energetic manifolds and motion possibility regions of rigid body in double force field”, Nelin. Dinam., 1:1 (2005), 23–31  mathnet  elib
71. M. P. Kharlamov, “Rough topological invariant of non-reducible problems in rigid body dynamics”, Pontryagin Readings XVI. Book of Abstracts (May 3–9, 2005), VSU, Voronezh, 2005, 159–159
72. M. P. Kharlamov, “Classes of critical motions and bifurcation diagrams of the Kowalevski top in double field”, IX Int. Conference on stability, control and rigid body dynamics. Book of Abstracts (Sept. 1–6, 2005), IAMM NASU, Donetsk, 2005, 11–12

   2004
73. M. P. Kharlamov, “Control in economic system with indefinite parameters. History lessons”, Vestn. Volg. Acad. Pub. Adm., 2004, no. 4, 15–21
74. M. P. Kharlamov, A. Yu. Savushkin, E. G. Shvedov, “Equivalence of one class of models in the problem of a rigid body rotation in double force field”, Vestn. Volg. Acad. Pub. Adm., 2004, no. 4, 127–140
75. M. P. Kharlamov, E. G. Shvedov, “Singularities of the algebraic curve assocciated with the problem of motion of the Kowalevski top in double constant field”, Vestn. Volg. Acad. Pub. Adm., 2004, no. 4, 141–152
76. M. P. Kharlamov, “The critical set and the bifurcation diagram of the problem of motion of the Kowalevski top in double field”, Mekh. Tverd. Tela, 2004, no. 34, 47–58  mathscinet
77. M. P. Kharlamov, E. G. Shvedov, “Bifurcation diagrams on iso-energetic levels of the Kowalevski top in double field”, Mekh. Tverd. Tela, 2004, no. 34, 59–65  mathscinet
78. M. P. Kharlamov, A. Yu. Savushkin, E. G. Shvedov, “Generalized Kowalevski top. Analytics, topology, geometry”, Proc. Voronezh Winter Math. School-2004, 2004, 173–191
79. M. P. Kharlamov, A. Yu. Savushkin, “Separation of variables and integral manifolds in one problem of motion of generalized Kowalevski top”, Ukrainian Mathematical Bulletin, 1:4 (2004), 569–586  mathscinet  zmath  adsnasa  hrarxiv  scopus
80. M. P. Kharlamov, E. G. Shvedov, “Periodic motions of the Kovalevskaya top in double force field”, Voronezh Winter Math. School. Book of Abstracts (Jan. 24–28, 2004), VGU Press, Voronezh, 2004, 3–4
81. M. P. Kharlamov, A. Yu. Savushkin, “Phase topology of one integrable system in rigid body dynamics”, Voronezh Winter Math. School. Book of Abstracts (Jan. 24–28, 2004), VGU Press, Voronezh, 2004, 5–6
82. M. P. Kharlamov, “Analytical and geometrical methods of investigation of motion of the generalized Kowalevski top”, Int. Conference on classical problems in rigid body dynamics. Book of Abstracts (June 23–25, 2004), IAMM NASU, Donetsk, 2004, 51–52
83. M. P. Kharlamov, E. G. Shvedov, “Bifurcation set in the problem of motion of the Kowalevski top in double force field”, V Int. Symposium on classical and celestial mechanics. Book of Abstracts (Aug. 23–28, 2004), Computer Center Rus. Ac. Sci., Moscow, 2004, 209–210
84. M. P. Kharlamov, “General approach to investigation of special motions of the generalized Kowalevski top”, V Int. Symposium on classical and celestial mechanics. Book of Abstracts (Aug. 23–28, 2004), Computer Center Rus. Ac. Sci., Moscow, 2004, 207–208

   2003
85. M. P. Kharlamov, A. Yu. Savushkin, E. G. Shvedov, “Bifurcation set in one problem of motion of the generalized Kowalevski top”, Mekh. Tverd. Tela, 2003, no. 33, 10–19  mathscinet  zmath

   2002
86. M. P. Kharlamov, “One class of solutions with two invariant relations of the problem of motion of the Kowalevski top in double constant field”, Mekh. Tverd. Tela, 2002, no. 32, 32–38  mathscinet  zmath  adsnasa  hrarxiv
87. M. P. Kharlamov, “Invariant relations and Bott functions”, VIII Int. Conference on stability, control and rigid body dynamics. Book of Abstracts (Sept. 3–7, 2002), IAMM NASU, Donetsk, 2002, 79–80

   2001
88. M. P. Kharlamov, “Automatic control of the program orientation of a rigid body”, Mekh. Tverd. Tela, 2001, no. 31, 126–133  mathscinet  zmath
89. N. N. Merkulova, M. P. Kharlamov, et al, Mathematics. Part II, Textbook, ed. N. N. Merkulova, VAPA Publ., Volgograd, 2001 , 188 pp.

   2000
90. M. N. Nazarov, M. P. Kharlamov, I. I. Yarchenkova, Informatics. Part I, Textbook, ed. M.P. Kharlamov, VAPA Publ., Volgograd, 2000 , 208 pp.
91. M. P. Kharlamov, I. I. Yarchenkova, Practicum in Informatics, Textbook, VAPA, Volgograd, 2000
92. N. N. Merkulova, M. P. Kharlamov, et al, Mathematics. Part I, Textbook, VAPA Publ., Volgograd, 2000 , 227 pp.

   1999
93. M. P. Kharlamov, “One method of real-time control of the rigid body”, Stability, control and rigid body dynamics. VII International Conference. Book of Abstracts, IAMM NASU, Donetsk, 1999, 43–44

   1997
94. M. P. Kharlamov, P. E. Ryabov, “Bifurcations of the first integrals of the Kowalevski-Yehia case”, Regular and Chaotic Dynamics, 2:2 (1997), 25–40  mathnet  crossref  mathscinet  zmath

   1995
95. P. H. Richter, A. Wittek, M. P. Kharlamov, A. P. Kharlamov, “Action integrals for ellipsoidal billiards”, Z.Naturforsch, 50A (1995), 693–710  isi (cited: 12)
96. M. P. Kharlamov, A. P. Kharlamov, “Non-holonomic hinge”, Mekh. Tverd. Tela, 1995, no. 27, 1–7  mathscinet  zmath

   1990
97. M. P. Kharlamov, N. V. Khodyakova, “On the choice of the goal function in the orientation control process for a rigid body”, Mathematical simulation in mechanics and control, 1990, 46–58  mathscinet
98. M. P. Kharlamov, N. V. Khodyakova, “On some algorythms of control of the orientation of rotating rigid body”, VI Republican Conference on the problems of rigid body dynamics. Book of Abstracts (Sept. 4–6, 1990), IAMM Ac.Sc. Ukraine, Donetsk, 1990, 48–48
99. Kondratev V.V., Kharlamov M.P., Yanovskii A.G. i dr., Matematicheskoe modelirovanie v zadachakh mekhaniki i upravleniya. Mezhvuzovskii nauchnyi sbornik, eds. Kharlamov M.P., Volgogradskii gosudarstvennyi universitet, Volgograd, 1990 , 147 pp.  zmath

   1989
100. M. P. Kharlamov, “Asymptotical motions in integrable mechanical systems”, Sixth National Congress on Theoretical and Applied Mechanics. Book of Abstracts (Sept. 25–30, 1989), Bulgarian Ac.Sci., Varna, 1989, 41–43

   1988
101. M. P. Kharlamov, Topological analysis of integrable problems of rigid body dynamics, LSU Publ., Leningrad, 1988 , 200 pp.  mathscinet  adsnasa  hrarxiv
102. M. P. Kharlamov, A. P. Kharlamov, “Using the computer graphics to investigate the problem of spatial motion of rigid bodies by axoids method”, USSR Conference on methods and tools of processing the complex graphics information. Book of Abstracts (Sept. 1988), Scientific Council Ac. Sci. USSR, Gorkiy State University, Gorkiy, 1988, 160–161

   1987
103. M. P. Kharlamov, “Gyrosystems”, Mekh. Tverd. Tela, 1987, no. 19, 42–54  mathscinet  zmath  adsnasa
104. M. P. Kharlamov, “Geometrical methods of investigation of the equilibrium forms of elastical rods”, Proc. of the 1st Conference on Mechanics. Results of research and developments in multi-side scientific cooperation of Academies of Science of socialist countries, v. 3, Chekh. Ac. Sci., Prague, 1987, 146–149
105. M. P. Kharlamov, N. V. Koblova, “Some algorythms of rigid body motion control”, V Chetaev Conference on stability of motion, analytical mechanics and motion control. Book of Abstracts, Kazan State University, Kazan, 1987, 98–98

   1986
106. V. M. Smotrov, M. P. Kharlamov, “Permanent motions of a gyrostat in a Newtonian force field”, Mechanics of Solids, 21:4 (1986), 9–12  adsnasa  scopus
107. M. P. Kharlamov, “On one asymptotic motion of a heavy gyrostat”, Mekh. Tverd. Tela, 1986, no. 18, 12–15  mathscinet  zmath  adsnasa
108. M. P. Kharlamov, “The orientation control of a rigid body based on kynematic characteristics”, IV USSR Congress on theoretical and applied mechanics. Book of Abstracts (Sept. 24–30, 1986), National Committee of USSR on Theoretical and Applies Mechanics, Tashkent, 1986, 624–624

   1985
109. M. P. Kharlamov, “On one class of motions of the Kowalevski top”, Mekh. Tverd. Tela, 1985, no. 17, 28–34  mathscinet  zmath  adsnasa
110. M. P. Kharlamov, I. A. Leonov, “Reduction in mechanical systems with gyroscopic forces”, Mekh. Tverd. Tela, 1985, no. 17, 35–41  mathscinet  zmath  adsnasa
111. M. P. Kharlamov, P. V. Kharlamov, “Systems of gyrostats (exact solutions)”, Proc. V National Congress on Theoretical and Applied Mechanics, v. 1, Bulg. Ac. Sci., Sofia, 1985, 137–140
112. M. P. Kharlamov, P. V. Kharlamov, “On one set of connected bodies”, Fifth National Congress on Theoretical and Applied Mechanics. Book of Abstracts (Sept. 23–29, 1985), Bulgarian Ac.Sci., Varna, 1985, 94–94

   1984
113. M. P. Kharlamov, “On the motion of the rigid body in the Goryachev-Chaplygin case”, Mekh. Tverd. Tela, 1984, no. 16, 3–12  mathscinet  zmath
114. M. P. Kharlamov, “Constructive method of graphical representation of motion of rigid bodies”, Proc. IX Int. Conf. on Non-linear oscillations, v. 3, Naukova dumka, Kiev, 1984, 269–271
115. M. P. Kharlamov, “Method of geometrical analysis and its application to the classical problems of rigid body dynamics”, IV Republican Conference on the problems of rigid body dynamics. Book of Abstracts, IAMM Ac.Sc. Ukraine, Donetsk, 1984, 58–59
116. M. P. Kharlamov, “Topological analysis of dynamic systems having a number of nonlinear first integrals”, X International Conference on Nonlinear oscillations. Book of Abstracts (Sept. 12–17, 1984), Bulgarian Ac. Sci., Union of Bulgarian Mathemeticians, Sofia, 1984, 421–421

   1983
117. M. P. Kharlamov, P. V. Kharlamov, “To solve a problem of rigid body dynamics. What does it mean”, Proc. of the IUTAM-ISIMM Symp. on modern Developments in Analytical Mechanics, 2 (1983), 535–562  mathscinet  scopus
118. M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805  mathnet  mathscinet  zmath  adsnasa  hrarxiv  scopus
119. M. P. Kharlamov, P. V. Kharlamov, “Construction of complete solution in the problem of respective motion of a rigid body”, Doklady Ac.Sci.Ukr., ser. A, 1983, no. 12, 36–38  zmath  adsnasa
120. M. P. Kharlamov, “On one class of motions of a gyrostat”, Mekh. Tverd. Tela, 1983, no. 15, 47–56  zmath
121. M. P. Kharlamov, “Symmetry in gyroscopic systems”, Mekh. Tverd. Tela, 1983, no. 15, 87–93  mathscinet  zmath  hrarxiv
122. M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem”, J. Appl. Math. and Mech., 47 (1983), 737–743  crossref  mathscinet  zmath  adsnasa  hrarxiv  scopus
123. M. P. Kharlamov, “Motion possibility regions in the cases of Kowalevski and Goryachev–Chaplygin”, MSU, M., 1983, 58–58
124. M. P. Kharlamov, Geometrical methods in the dynamics of a rigid body, Thesis Doct. Phys.-Math. Science, MSU, M., 1983
125. M. P. Kharlamov, “Motion possibility regions in the cases of Kowalevski and Goryachev–Chaplygin”, USSR Conference on contemporary problems of mathematics, mechanics and applications. Book of Abstracts, MSU, Moscow, 1983, 58–58

   1982
126. M. P. Kharlamov, “Regions of possible motion in mechanical systems”, Soviet Physics Doklady, 27 (1982), 921–923  mathnet  mathscinet  zmath  hrarxiv
127. M. P. Kharlamov, “A new method for solving three-dimensional problems in the nonlinear theory of elastic rods”, Mekh. Tverd. Tela, 1982, no. 14, 116–123  mathscinet  zmath
128. M. P. Kharlamov, E. K. Sergeev, “Construction of complete solution in one problem of rigid body motion”, Mekh. Tverd. Tela, 1982, no. 14, 33–38  mathscinet  zmath
129. M. P. Kharlamov, Phase topology of the Chaplygin–Sretenski solution, N 2622-82, VINITI, 1982 , 34 pp.
130. M. P. Kharlamov, P. V. Kharlamov, “Computer methods of building the complete solution in the problems of rigid body dynamics”, Simposium of East-Europe Academies of Sciences: Scientific foundations of machines mechanics, constructions and technological processes. Book of Abstracts, ILIM, Frunze, Kirgizstan, 1982, 64–64
131. M. P. Kharlamov, P. V. Kharlamov, “On the notion of a solution of the differensial equations in the problems of rigid body dynamics”, III Republican Simposium of differential and integral equations. Book of Abstracts, Odessa State University, Odessa, 1982, 65–66

   1981
132. M. P. Kharlamov, “On the construction of angular velocity godographs of a body with a fixed point”, Mekh. Tverd. Tela, 1981, no. 13, 10–14  mathscinet  zmath
133. M. P. Kharlamov, “Phase topology of one problem of motion of a gyroscope”, Mekh. Tverd. Tela, 1981, no. 13, 14–23  mathscinet  zmath
134. T. I. Pogosyan, M. P. Kharlamov, “Domains of feasible motions in certain mechanical systems”, J. Appl. Math. and Mech., 45:4 (1981), 445–448  crossref  mathscinet  zmath  adsnasa  scopus
135. M. P. Kharlamov, “New methods of visualization of non-linear oscillations of rigid bodies”, IX Int. Conference on non-linear oscillations. Book of Abstracts, Naukova Dumka, Kiev, 1981, 341–341
136. V. I. Koval, E. K. Sergeev, M. P. Kharlamov, “Applying technical tools to build a complete solution of problems of rigid body dynamics”, V USSR Simposium on theoretical and applied mechanics. Book of Abstracts, Nauka, Alma-Ata, 1981, 368–368
137. M. P. Kharlamov, V. I. Koval, “Applying numerical algorythm of building the complete solution to investigation of one class of motions of the Kowalevski gyroscope”, III Republican Conference on the problems of rigid body dynamics. Book of Abstracts, IAMM Ac.Sc. Ukraine, Donetsk, 1981, 55–55
138. M. P. Kharlamov, “Bifurcation set and integral manifolds in the Goryachev–Chaplygin case”, III Republican Conference on the problems of rigid body dynamics. Book of Abstracts, IAMM Ac.Sc. Ukraine, Donetsk, 1981, 54–54
139. M. P. Kharlamov, “Phase topology of the problem of gyrostat motion in the case of L.N.Sretensky”, III Republican Conference on the problems of rigid body dynamics. Book of Abstracts, IAMM Ac.Sc. Ukraine, Donetsk, 1981, 54–55

   1980
140. M. P. Kharlamov, “An exact solution of the problem of the motion of a gyroscope in a Cardan suspension”, Soviet Physics Doklady, 25 (1980), 105-107  mathnet  mathscinet  mathscinet  zmath  adsnasa  adsnasa
141. M. P. Kharlamov, “Method of the integral maps in rigid body dynamics”, Methods of investigation of stationary motions of mechanical systems, MSU, M., 1980, 17–18
142. G. A. Kononykhin, M. P. Kharlamov, “On the inertial motion of two rigid bodies coupled by a spherical hinge”, Mekh. Tverd. Tela, 1980, no. 12, 52–63  mathscinet  zmath
143. M. P. Kharlamov, “Construction of the axoids of three-dimensional motion of a rigid body”, Mekh. Tverd. Tela, 1980, no. 12, 3–8  mathscinet  zmath

   1979
144. G. A. Kononykhin, M. P. Kharlamov, “On the equations of motion of the two-body system coupled with elastic spherical hinge”, Doklady Ac.Sci.Ukr., ser. A, 1979, no. 4, 275–278  zmath
145. M. P. Kharlamov, “On some applications of the differential geometry in the theory of mechanical systems”, Mekh. Tverd. Tela, 1979, no. 11, 37–49  mathscinet  zmath  adsnasa  hrarxiv
146. M. P. Kharlamov, “Phase topology of one integrable case of the rigid body motion”, Mekh. Tverd. Tela, 1979, no. 11, 50–64  mathscinet  zmath  adsnasa  hrarxiv
147. T. I. Pogosyan, M. P. Kharlamov, “Bifurcation set and integral manifolds of the problem concerning the motion of a rigid body in a linear force field”, J. Appl. Math. and Mech., 43:3 (1979), 452–462  crossref  mathscinet  zmath  adsnasa  scopus
148. M. P. Kharlamov, “Steady-state solutions of the two body problem”, Problems of Motion Stability, Analytical Mechanics, and Motion Control, eds. Matrosov, V. M. & Panchenkov, A. N., 1979, 147-153  mathscinet  zmath  adsnasa
149. T. I. Pogosyan, M. P. Kharlamov, “On bifurcations of the first integrals in one case of a rigid body motion”, III Republican Conference of the young scientists in mechanics. Book of Abstracts, Naukova Dumka, Kiev, 1979, 176–177

   1978
150. M. P. Kharlamov, “On conditionally linear integral of motion of a rigid body having dynamical symmetry”, Mekh. Tverd. Tela, 1978, no. 10, 24–29  zmath
151. M. P. Kharlamov, Investigation of the qualitative properties of dynamical systems with symmetry, Thesis Cand. Phys.-Math.Science (Ph.D.), MSU, M., 1978
152. M. P. Kharlamov, “Oscillations of a rigid body in the field of a gravitational center”, USSR Conference on stability of motion, oscillations of mechanical systems and aerodynamics. Book of Abstracts, Moscow Aviation Institute, Moscow, 1978, 21–22

   1977
153. M. P. Kharlamov, “On one class of integrals of rigid body motion”, Doklady Ac.Sci.Ukr., ser. A, 1977, no. 2, 120–122  zmath
154. M. P. Kharlamov, “To the $n$ rigid bodies problem”, Mekh. Tverd. Tela, 1977, no. 9, 86–99  zmath
155. M. P. Kharlamov, “Characteristic class of a bundle and the existence of a global Routh function”, Funct. Anal. Appl., 11:1 (1977), 80–81  mathnet  crossref  mathscinet  zmath  adsnasa  hrarxiv  scopus
156. M. P. Kharlamov, “Interaction of two rigid bodies and stationary motions”, III Chetaev Conference on stability of motion, analytical mechanics and motion control. Book of Abstracts (June 1977), Ac. Sci. USSR, Irkutsk, 1977, 120–121
157. M. P. Kharlamov, “On separation of variables in the Clebsch problem”, VI Kazakh Conference on mathematics and mechanics. Book of Abstracts, Nauka, Alma-Ata, 1977, 44–45

   1976
158. M. P. Kharlamov, “On a conditionally linear integral of the equation of motion for a rigid body having a fixed point”, Mechanics of Solids, 11:3 (1976), 6-13  adsnasa  adsnasa
159. M. P. Kharlamov, “Integral manifolds of the reduced system in the problem of inertial motion of a rigid body about a fixed point”, Mekh. Tverd. Tela, 1976, no. 8, 18–23  hrarxiv  scopus
160. M. P. Kharlamov, “Reduction in mechanical systems with symmetry”, Mekh. Tverd. Tela, 1976, no. 8, 4–18  hrarxiv

   1973
161. M. P. Kharlamov, “Planar automodelic motions of Hooke's media”, Mekh. Tverd. Tela, 1973, no. 5, 48–54  zmath
162. M. P. Kharlamov, “Centrally symmetric automodelic motions of Hooke's media”, Mekh. Tverd. Tela, 1973, no. 5, 55–59  zmath

   1972
163. M. P. Kharlamov, A. I. Khokhlov, “Operators admitted by the dynamical equations of elasticity theory”, Doklady Ac.Sci.Ukr., ser. A, 1972, no. 11, 1005–1007  zmath
164. M. P. Kharlamov, A. I. Khokhlov, “Operators admitted by the equations of three-dimensional elasticity theory”, Mekh. Tverd. Tela, 1972, no. 4, 161–176

   1971
165. M. P. Kharlamov, “Operators admitted by the equations of planar motion of the elastic rigid body”, II Republican Conference on rigid body dynamics. Book of Abstracts (Nov. 29 – Dec. 2, 1971), IAMM Ac.Sc. Ukraine, Donetsk, 1971, 30–31

Presentations in Math-Net.Ru
1. Bifurcations of first integrals in the Kowalevski – Sokolov case
M. P. Kharlamov, P. E. Ryabov, A. Yu. Savushkin
Dynamics, Bifurcations, and Strange Attractors, 2015
July 22, 2015 18:00
2. $e(3)$
M. P. Kharlamov, P. E. Ryabov
International Conference on Mathematical Control Theory and Mechanics
July 4, 2015 12:40
3. Methods of calculating the exact topology of algebraically separable systems
M. P. Kharlamov
International Conference on Mathematical Control Theory and Mechanics
July 4, 2015 12:10
4. Method of critical subsystems as a way to calculate the types of critical points in integrable systems with three degrees of freedom
M. P. Kharlamov, P. E. Ryabov
Hamiltonian Dynamics, Nonautonomous Systems, and Patterns in PDE's
December 11, 2014 17:00
5. Invariants in almost Hamiltonian systems with non-orientable phase space
M. P. Kharlamov
Modern geometry methods
March 12, 2014 18:30
6. Topological invariants of one integrable system with singularities of the symplectic structure
M. P. Kharlamov
Modern geometry methods
March 20, 2013 18:30
7. Hamiltonian systems on the Lie coalgebra $ L^*_9$, parametric reduction, and integrable cases
M. P. Kharlamov
Differential geometry and applications
March 18, 2013 16:45
8. Net diagrams for the Fomenko invariant in an integrable system with three degrees of freedom
M. P. Kharlamov, P. E. Ryabov
Modern geometry methods
March 28, 2012 18:30
9. Algebraically solvable systems and Boolean functions
M. P. Kharlamov
Modern geometry methods
April 20, 2011 18:30

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020