Guliev, Vagif Sabir ogly

Statistics Math-Net.Ru
Total publications: 25
Scientific articles: 25
Presentations: 1

Number of views:
This page:2636
Abstract pages:5567
Full texts:1936
List of publications on Google Scholar

Publications in Math-Net.Ru
1. R. A. Bandaliyev, V. S. Guliyev, “Embedding Theorems between Variable-Exponent Morrey Spaces”, Math. Notes, 106:4 (2019), 488–500  mathnet  isi  elib  scopus
2. V. S. Guliev, E. D. Ibragimov, “Conditions for the $L_{p,\lambda}$-Boundedness of the Riesz Potential Generated by the Gegenbauer Differential Operator”, Mat. Zametki, 105:5 (2019),  685–695  mathnet  elib; Math. Notes, 105:5 (2019), 674–683  isi  scopus
3. V. S. Guliev, F. Deringoz, S. G. Hasanov, “Commutators of Fractional Maximal Operator on Orlicz Spaces”, Mat. Zametki, 104:4 (2018),  516–526  mathnet  elib; Math. Notes, 104:4 (2018), 498–507  isi  scopus
4. A. Eroglu, V. S. Guliev, J. V. Azizov, “Characterizations for the Fractional Integral Operators in Generalized Morrey Spaces on Carnot Groups”, Mat. Zametki, 102:5 (2017),  789–804  mathnet  mathscinet  elib; Math. Notes, 102:5 (2017), 722–734  isi  scopus
5. Vagif S. Guliyev, Fatai A. Isayev, Zaman V. Safarov, “Two-weighted inequality for $p$-admissible $B_{k,n}$–singular operators in weighted Lebesgue spaces”  mathnet
6. V. S. Guliev, Zhijian Wu, Ying Xiao, “Morrey-type Banach spaces, maximal operator and Fourier multipliers”  mathnet
7. Vagif S. Guliyev, Zhijian Wu, Ying Xiao, “Morrey-type Banach spaces, maximal operator and Fourier multipliers”  mathnet
8. C. Aykol, V. S. Guliyev, A. Serbetci, “The O'Neil inequality for the Hankel convolution operator and some applications”, Eurasian Math. J., 4:3 (2013),  8–19  mathnet
9. A. Akbulut, V. S. Guliev, Sh. A. Muradova, “On the boundedness of the anisotropic fractional maximal operator from anisotropic complementary Morrey-type spaces to anisotropic Morrey-type spaces”, Eurasian Math. J., 4:1 (2013),  7–20  mathnet  mathscinet  zmath
10. V. S. Guliyev, “Generalized weighted Morrey spaces and higher order commutators of sublinear operators”, Eurasian Math. J., 3:3 (2012),  33–61  mathnet  mathscinet  zmath
11. V. S. Guliyev, A. Serbetci, A. Akbulut, Y. Y. Mammadov, “Nikol'skii–Besov and Lizorkin–Triebel spaces constructed on the base of the multidimensional Fourier–Bessel transform”, Eurasian Math. J., 2:3 (2011),  42–66  mathnet  mathscinet  zmath
12. V. I. Burenkov, V. S. Guliyev, A. Serbetci, T. V. Tararykova, “Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces”, Eurasian Math. J., 1:1 (2010),  32–53  mathnet  mathscinet  zmath
13. V. S. Guliev, N. N. Garakhanova, “The Sobolev–Il'in theorem for the $B$-Riesz potential”, Sibirsk. Mat. Zh., 50:1 (2009),  63–74  mathnet  mathscinet  elib; Siberian Math. J., 50:1 (2009), 49–59  isi  scopus
14. V. S. Guliev, N. N. Garakhanova, Yu. Zeren, “Pointwise and integral estimates for the $B$-Riesz potential in terms of $B$-maximal and $B$-fractional maximal functions”, Sibirsk. Mat. Zh., 49:6 (2008),  1263–1279  mathnet  mathscinet; Siberian Math. J., 49:6 (2008), 1008–1022  isi  scopus
15. V. S. Guliev, Sh. A. Nazirova, “A rearrangement estimate for the generalized multilinear fractional integrals”, Sibirsk. Mat. Zh., 48:3 (2007),  577–585  mathnet  mathscinet  zmath; Siberian Math. J., 48:3 (2007), 463–470  isi  scopus
16. V. S. Guliev, R. A. Bandaliev, “Two-Weight Inequalities for Integral Operators in $L_p$-Spaces of Banach-Valued Functions and Their Applications”, Tr. Mat. Inst. Steklova, 243 (2003),  194–212  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 243 (2003), 185–203
17. V. S. Guliev, R. Ch. Mustafayev, “Integral operators of potential type in spaces of homogeneous type”, Dokl. Akad. Nauk, 354:6 (1997),  730–732  mathnet  mathscinet  zmath
18. V. S. Guliev, “On the theory of multipliers of Fourier integrals for Banach-space-valued functions”, Tr. Mat. Inst. Steklova, 214 (1997),  164–181  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 214 (1996), 157–174
19. V. S. Guliev, “Multipliers of Fourier integrals and estimation of mixed derivatives for Banach-valued functions”, Dokl. Akad. Nauk, 341:1 (1995),  7–9  mathnet  mathscinet  zmath
20. V. S. Guliev, P. I. Lizorkin, “Spaces of Banach-valued analytic and periodic functions”, Trudy Mat. Inst. Steklov., 210 (1995),  101–119  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 210 (1995), 74–88
21. V. S. Guliev, “Embedding theorems for weighted Sobolev spaces of $B$-valued functions”, Dokl. Akad. Nauk, 338:4 (1994),  440–443  mathnet  mathscinet  zmath; Dokl. Math., 50:2 (1995), 264–268
22. V. S. Guliev, “Embedding theorems for spaces of $UMD$-valued functions”, Dokl. Akad. Nauk, 329:4 (1993),  408–410  mathnet  mathscinet  zmath; Dokl. Math., 47:2 (1993), 274–277
23. V. S. Guliev, P. I. Lizorkin, “Classes of holomorphic and harmonic functions in the polydisk in connection with their boundary values”, Trudy Mat. Inst. Steklov., 204 (1993),  137–159  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 204 (1994), 117–135
24. V. S. Guliev, “Two-weighted inequalities for integral operators in $L_p$-spaces, and their applications”, Trudy Mat. Inst. Steklov., 204 (1993),  113–136  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 204 (1994), 97–116
25. P. I. Lizorkin, V. S. Guliev, “Functional spaces and approximation problems on Heisenberg group”, Trudy Mat. Inst. Steklov., 201 (1992),  245–272  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 201 (1994), 205–227
26. V. S. Guliev, P. I. Lizorkin, “$\mathscr{B}$- and $\mathscr{L}$-classes of harmonic and holomorphic functions in the disc, and classes of boundary values”, Dokl. Akad. Nauk SSSR, 319:4 (1991),  806–810  mathnet  mathscinet  zmath; Dokl. Math., 44:1 (1992), 215–219
27. V. S. Guliev, “Boundedness of singular integral operators on the Heisenberg group in weighted generalized Hölder spaces and weighted $L_p$-spaces”, Dokl. Akad. Nauk SSSR, 316:2 (1991),  274–278  mathnet  mathscinet  zmath
28. V. S. Guliev, “Some classes of anisotropic integral operators and weighted embedding theorems in a domain with a nonsmooth boundary”, Dokl. Akad. Nauk SSSR, 304:6 (1989),  1289–1293  mathnet  mathscinet  zmath; Dokl. Math., 39:1 (1989), 199–203

Presentations in Math-Net.Ru
1. Necessary and sufficient conditions for the boundedness of the fractional integral operators in the local Morrey-type spaces on Carnot groups
V. S. Guliyev
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 29, 2015 10:40   

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021