RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Durdiev, Durdimurod Kalandarovich

Statistics Math-Net.Ru
Total publications: 16
Scientific articles: 16

Number of views:
This page:2230
Abstract pages:4635
Full texts:1261
References:440
Professor
Doctor of physico-mathematical sciences (2010)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords: integro-differential equation, inverse problem, the wave equation, pulse source, the characteristic, uniqueness, estimate of stability

Subject:

Inverse problems for hyperbolic equations with memory Inverse problems for integro--differential equations of hyperbolic and parabolic types

   
Main publications:
  • 1.Durdiev.D.K. On correctness of one inverse problem for the hyperbolic integro-differential equation//Sib.Math.Journ. 33(1992),3, p.69-77(in russion).
  • 2.Durdiev.D.K. A multi-dimensional inverse problem for equation with memory.//Sib.Math.Journ. 35(1994),3, p.574-582(in russion).

http://www.mathnet.ru/eng/person29112
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:durdiev.d-k
https://mathscinet.ams.org/mathscinet/MRAuthorID/315724
http://orcid.org/0000-0002-6054-2827
http://www.scopus.com/authid/detail.url?authorId=16411517300

Publications in Math-Net.Ru
2018
1. Zh. D. Totieva, D. K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Mat. Zametki, 103:1 (2018),  129–146  mathnet  elib; Math. Notes, 103:1 (2018), 118–132  isi  scopus
2. D. K. Durdiev, A. A. Rakhmonov, “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability”, TMF, 195:3 (2018),  491–506  mathnet  elib; Theoret. and Math. Phys., 195:3 (2018), 923–937  isi  scopus
2017
3. D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Sibirsk. Mat. Zh., 58:3 (2017),  553–572  mathnet  elib; Siberian Math. J., 58:3 (2017), 427–444  isi  elib  scopus
2015
4. D. K. Durdiev, Zh. Sh. Safarov, “Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain”, Mat. Zametki, 97:6 (2015),  855–867  mathnet  mathscinet  elib; Math. Notes, 97:6 (2015), 867–877  isi  scopus
5. D. Q. Durdiev, Zh. D. Totieva, “The problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015),  18–43  mathnet
6. D. K. Durdiev, “On the uniqueness of kernel determination in the integro-differential equation of parabolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015),  658–666  mathnet  zmath  elib
2013
7. D. K. Durdiev, Z. R. Bozorov, “A problem of determining the kernel of integrodifferential wave equation with weak horizontal properties”, Dal'nevost. Mat. Zh., 13:2 (2013),  209–221  mathnet
8. D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013),  72–82  mathnet  mathscinet
2012
9. D. K. Durdiev, Zh. Sh. Safarov, “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012),  37–47  mathnet
2009
10. Durdimurod K. Durdiev, “An Identification Problem of Memory Function of a Medium and the Form of an Impulse Source”, J. Sib. Fed. Univ. Math. Phys., 2:2 (2009),  127–136  mathnet
11. D. K. Durdiev, “The Problem of Determining a Function of the Memory of a Medium and of the Regular Part of a Pulsed Source”, Mat. Zametki, 86:2 (2009),  202–212  mathnet  mathscinet  zmath; Math. Notes, 86:2 (2009), 187–195  isi  scopus
12. D. K. Durdiev, “An Inverse Problem for Determining Two Coefficients in an Integrodifferential Wave Equation”, Sib. Zh. Ind. Mat., 12:3 (2009),  28–40  mathnet  mathscinet
13. D. K. Durdiev, “Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009),  17–28  mathnet
2008
14. D. K. Durdiev, “Problem of determining the nonstationary potential in a hyperbolic-type equation”, TMF, 156:2 (2008),  220–225  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 156:2 (2008), 1154–1158  isi  scopus
2007
15. D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zh. Mat. Fiz. Anal. Geom., 3:4 (2007),  411–423  mathnet  mathscinet  zmath
1994
16. D. K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Sibirsk. Mat. Zh., 35:3 (1994),  574–582  mathnet  mathscinet  zmath; Siberian Math. J., 35:3 (1994), 514–521  isi

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020