Publications in Math-Net.Ru |
|
2020 |
1. |
Andrey V. Chernov, “Differential games in a Banach space on a fixed chain”, Mat. Teor. Igr Pril., 12:3 (2020), 89–118 |
2. |
A. V. Chernov, “On preservation of global solvability of controlled second kind operator equation”, Ufimsk. Mat. Zh., 12:1 (2020), 56–82 ; Ufa Math. J., 12:1 (2020), 56–81 |
3. |
A. V. Chernov, “On the uniqueness of solution to the inverse problem of the atmospheric electricity”, Russian Universities Reports. Mathematics, 25:129 (2020), 85–99 |
4. |
A. V. Chernov, “On totally global solvability of controlled second kind operator equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:1 (2020), 92–111 |
|
2019 |
5. |
A. V. Chernov, “On application of Gaussian functions to numerical solution of optimal control problems”, Avtomat. i Telemekh., 2019, 6, 51–69 ; Autom. Remote Control, 80:6 (2019), 1026–1040 |
6. |
Andrey V. Chernov, “On the problem of solving multimove games under time deficit”, Mat. Teor. Igr Pril., 11:2 (2019), 96–120 |
|
2018 |
7. |
A. V. Chernov, “On the total preservation of univalent global solvability for a first kind operator equation with controlled added nonlinearity”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, 11, 60–74 |
8. |
A. V. Chernov, “On differentiation of functionals of approximating problems in the frame of solution of free time optimal control problems by the sliding nodes method”, Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 861–876 |
9. |
A. V. Chernov, “Majorant sign of the first order for totally global solvability of a controlled functional operator equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:4 (2018), 531–548 |
10. |
A. V. Chernov, “Preservation of the solvability of a semilinear global electric circuit equation”, Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018), 2095–2111 ; Comput. Math. Math. Phys., 58:12 (2018), 2018–2030 |
|
2017 |
11. |
A. V. Chernov, “JPEG-like method of control parametrization for numerical solution of the distributed optimization problems”, Avtomat. i Telemekh., 2017, 8, 145–163 ; Autom. Remote Control, 78:8 (2017), 1474–1488 |
12. |
A. V. Chernov, “On total preservation of solvability for a controlled Hammerstein type equation with non-isotone and non-majorized operator”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, 6, 83–94 ; Russian Math. (Iz. VUZ), 61:6 (2017), 72–81 |
13. |
Andrey V. Chernov, “On some approaches to searching the Nash equilibrium in concave games”, Mat. Teor. Igr Pril., 9:2 (2017), 62–104 |
14. |
A. V. Chernov, “On the application of Gaussian functions for discretization of optimal control problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:4 (2017), 558–575 |
15. |
A. V. Chernov, “On using Gaussian functions with varied parameters for approximation of functions of one variable on a finite segment”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017), 267–282 |
|
2016 |
16. |
A. V. Chernov, “On the uniqueness of solution to the inverse problem of determination parameters in the senior coefficient
and the righthand side of an elliptic equation”, Dal'nevost. Mat. Zh., 16:1 (2016), 96–110 |
17. |
A. V. Chernov, “On the structure of a solution set of controlled initial-boundary value problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, 2, 75–86 ; Russian Math. (Iz. VUZ), 60:2 (2016), 62–71 |
18. |
A. V. Chernov, “Differentiation of a functional in the problem of parametric coefficient optimization in the global electric circuit equation”, Zh. Vychisl. Mat. Mat. Fiz., 56:9 (2016), 1586–1601 ; Comput. Math. Math. Phys., 56:9 (2016), 1565–1579 |
|
2015 |
19. |
A. V. Chernov, “On the analogue of Wintner's theorem for a controlled elliptic equation”, Izv. IMI UdGU, 2015, 2(46), 228–235 |
20. |
Andrey V. Chernov, “On existence of the Nash equilibrium in a differential game associated with elliptic equations: the monotone case”, Mat. Teor. Igr Pril., 7:3 (2015), 48–78 |
21. |
A. V. Chernov, “On piecewise constant approximation in distributed optimization problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 264–279 |
22. |
A. V. Chernov, “On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015), 230–243 |
23. |
A. V. Chernov, “On the convergence of the conditional gradient method as applied to the optimization of an elliptic equation”, Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015), 213–228 ; Comput. Math. Math. Phys., 55:2 (2015), 212–226 |
|
2014 |
24. |
A. V. Chernov, “On convexity local conditions for attainable tubes of controlled distributed systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, 11, 72–86 ; Russian Math. (Iz. VUZ), 58:11 (2014), 60–73 |
25. |
Andrey V. Chernov, “On existence of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with elliptic partial differential equations”, Mat. Teor. Igr Pril., 6:1 (2014), 91–115 |
26. |
A. V. Chernov, “On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 305–321 |
27. |
A. V. Chernov, “On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation”, Vladikavkaz. Mat. Zh., 16:3 (2014), 55–63 |
28. |
A. V. Chernov, “On applicability of control parametrization technique to solving distributed optimization problems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, 1, 102–117 |
|
2013 |
29. |
A. V. Chernov, “Uniformly continuous dependence of a solution to a controlled functional operator equation on a shift of control”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, 5, 36–50 ; Russian Math. (Iz. VUZ), 57:5 (2013), 29–41 |
30. |
Andrey V. Chernov, “On some approach to construction of $\varepsilon$-equilibrium in noncooperative $n$-person games associated with partial differential equations”, Mat. Teor. Igr Pril., 5:1 (2013), 104–123 |
31. |
A. V. Chernov, “A Generalization of Bihari's Lemma to the Case of Volterra Operators in Lebesgue Spaces”, Mat. Zametki, 94:5 (2013), 757–769 ; Math. Notes, 94:5 (2013), 703–714 |
32. |
A. V. Chernov, “On $\varepsilon$-equilibrium in noncooperative functional operator $n$-person games”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 316–328 |
33. |
A. V. Chernov, “On controllability of nonlinear distributed systems on a set of discretized controls”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, 1, 83–98 |
34. |
A. V. Chernov, “Smooth finite-dimensional approximations of distributed optimization problems via control discretization”, Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013), 2029–2043 ; Comput. Math. Math. Phys., 53:12 (2013), 1839–1852 |
|
2012 |
35. |
A. V. Chernov, “To investigation of dependence of solution to controlled functional operator equation on a shift of control”, Izv. IMI UdGU, 2012, 1(39), 157–158 |
36. |
A. V. Chernov, “A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, 3, 62–73 ; Russian Math. (Iz. VUZ), 56:3 (2012), 55–65 |
37. |
Andrey V. Chernov, “On existence of $\varepsilon$-equilibrium in Volterra functional operator games without discrimination”, Mat. Teor. Igr Pril., 4:1 (2012), 74–92 |
38. |
A. V. Chernov, “On Volterra type generalization of monotonization method for nonlinear functional operator equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, 2, 84–99 |
39. |
A. V. Chernov, “Sufficient conditions for the controllability of nonlinear distributed systems”, Zh. Vychisl. Mat. Mat. Fiz., 52:8 (2012), 1400–1414 ; Comput. Math. Math. Phys., 52:8 (2012), 1115–1127 |
|
2011 |
40. |
A. V. Chernov, “A majorant criterion for the total preservation of global solvability of controlled functional operator equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, 3, 95–107 ; Russian Math. (Iz. VUZ), 55:3 (2011), 85–95 |
41. |
Andrey V. Chernov, “On Volterra functional operator games on a given set”, Mat. Teor. Igr Pril., 3:1 (2011), 91–117 ; Autom. Remote Control, 75:4 (2014), 787–803 |
42. |
A. V. Chernov, “On the convergence of the conditional gradient method in distributed optimization problems”, Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011), 1616–1629 ; Comput. Math. Math. Phys., 51:9 (2011), 1510–1523 |
|
2010 |
43. |
A. V. Chernov, “О вольтерровых функционально-операторных играх”, Matem. Mod. Kraev. Zadachi, 2 (2010), 289–291 |
44. |
A. V. Chernov, “Pointwise Estimation of the Difference of the Solutions of a Controlled Functional Operator Equation in Lebesgue Spaces”, Mat. Zametki, 88:2 (2010), 288–302 ; Math. Notes, 88:2 (2010), 262–274 |
|
2006 |
45. |
A. V. Chernov, “О преодолении сингулярности распределенных систем управления”, Matem. Mod. Kraev. Zadachi, 2 (2006), 171–174 |
|
2005 |
46. |
A. V. Chernov, “О необходимых условиях оптимальности в задаче управления старшими коэффициентами системы гиперболических уравнений первого порядка”, Matem. Mod. Kraev. Zadachi, 2 (2005), 259–262 |
|
2004 |
47. |
A. V. Chernov, “К применению теоремы о неявной функции для обоснования градиентных методов в распределенных задачах оптимизации”, Matem. Mod. Kraev. Zadachi, 2 (2004), 265–268 |
|
2000 |
48. |
V. I. Sumin, A. V. Chernov, “On some criteria for the quasinilpotency of functional operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, 2, 77–80 ; Russian Math. (Iz. VUZ), 44:2 (2000), 75–78 |
|
1998 |
49. |
V. I. Sumin, A. V. Chernov, “Operators in the spaces of measurable functions: the Volterra property and quasinilpotency”, Differ. Uravn., 34:10 (1998), 1402–1411 ; Differ. Equ., 34:10 (1998), 1403–1411 |
|