RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Zabudskii, Gennadii Grigorevich

Total publications: 34 (32)
in MathSciNet: 17 (17)
in zbMATH: 15 (14)
in Web of Science: 7 (7)
in Scopus: 20 (20)
Cited articles: 18
Citations in Math-Net.Ru: 34
Citations in Web of Science: 20
Citations in Scopus: 34

Number of views:
This page:1200
Abstract pages:4908
Full texts:1777
References:467
Zabudskii, Gennadii Grigorevich
Professor
Doctor of physico-mathematical sciences (2006)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
Birth date: 2.02.1956
E-mail:
Keywords: discrete optimization, placing problems, connected objects.
UDC: 519.854.2, 519.854, 519.854.33, 519.658
MSC: 90B80, 90C10 , 90C27

Subject:

mathematical modeling, discrete optimization, problems of optimum placing.

   
Main publications:
  1. G.G. Zabudskii, A.Yu. Lagzdin, “Polinomialnye algoritmy resheniya minimaksnoi kvadratichnoi zadachi o naznacheniyakh”, Diskretnyi analiz i issledovanie operatsii, 18:4 (2011), 49–65  mathnet  mathscinet  zmath
  2. G.G. Zabudskii, A.Yu. Lagzdin, “Polinomialnye algoritmy resheniya kvadratichnoi zadachi o naznacheniyakh na setyakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 50:11 (2010), 2052–2059  mathnet  mathscinet  zmath

http://www.mathnet.ru/eng/person30321
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:zabudskii.g-g
https://mathscinet.ams.org/mathscinet/MRAuthorID/319469
http://elibrary.ru/author_items.asp?spin=6867-6281
http://orcid.org/0000-0002-8560-3446
http://www.researcherid.com/rid/D-2650-2013
http://www.scopus.com/authid/detail.url?authorId=6506349303

Full list of publications:
| scientific publications | by years | by types | by times cited in WoS | by times cited in Scopus | common list |



   2017
1. Zabudskii, G.G., Keiner, “Optimal placement of rectangles on a plane with fixed objects”, Automation and Remote Control, 78:9 (2017), 1651-1661 (to appear) https://link.springer.com/content/pdf/10.1134  mathnet  crossref  mathscinet  zmath  zmath  isi  elib  scopus

   2016
2. G. G. Zabudskii, N. S. Veremchuk, “An algorithm for finding an approximate solution to the Weber problem on a line with forbidden gaps”, Journal of Applied and Industrial Mathematics, 10:1 (2016), 136-144 http://link.springer.com/article/10.1134  mathnet  crossref  crossref  mathscinet  mathscinet  zmath  elib  elib  scopus (cited: 7)  scopus (cited: 7)

   2014
3. G. G. Zabudskii, A. A. Koval', “Solving a maximin location problem on the plane with given accuracy”, Autom. Remote Control, 75:7 (2014), 1221–1230  mathnet  crossref  isi (cited: 2)  elib  elib  scopus (cited: 2)  scopus (cited: 2)
4. G. G. Zabudsky, N. S. Veremchuk, “Solving Weber Problem on Plane with Minimax Criterion and Forbidden Gaps”, IIGU Ser. Matematika, 9 (2014), 10–25  mathnet

   2013
5. G. G. Zabudskii, I. V. Amzin, “Algorithms of compact location for technological equipment on parallel lines”, Journal of Applied and Industrial Mathematics, 16:3 (2013), 86–94  mathnet  mathscinet  elib

   2012
6. Zabudsky, G. G., Amzin I. V., “Optimal location of rectangles on parallel lines”, 21 International Symposium on Mathematical Programming (ISMP-2012) (Berlin, Germany, August 19 – 24, 2012.), Berlin Technische Universit Berlin, 2012, 149 http://ismp2012.mathopt.org/images/stories/bookofabstracts_onlineversion.pdf
7. Zabudskii G.G., Koval F/ F/, “Optimizatsiya razmescheniya ob'ektov na ploskosti s maksiminnym kriteriem i minimalno dopustimymi rasstoyaniyami”, Intellektualizatsiya obrabotki informatsii: 9-ya mezhdunarodnaya konferentsiya. (Chernogoriya, g. Budva, 16–22 sentyabrya 2012 g.), Torus Press, Moskva, 2012, 257-259
8. Zabudskii G.G., Lagzdin A.Yu., “DINAMIChESKOE PROGRAMMIROVANIE DLYa REShENIYa KVADRATIChNOI ZADAChI O NAZNAChENIYaKh NA DEREVE”, Avtomatika i telemekhanika, 2 (2012), 141-155  mathnet (cited: 3)  mathscinet  zmath  isi (cited: 2)  elib (cited: 2)
9. Zabudskii G.G., Amzin I.V., “SEARCH REGION CONTRACTION OF THE WEBER PROBLEM SOLUTION ON THE PLANE WITH RECTANGULAR FORBIDDEN ZONES”, Automation and Remote Control, 73:5 (2012) , 821-830 pp.  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)  scopus (cited: 2)
10. G. G. Zabudskii, I. V. Amzin, “Search region contraction of the Weber problem solution on the plane with rectangular forbidden zones”, Autom. Remote Control, 73:5 (2012), 821–830  mathnet  crossref  elib (cited: 1)  elib (cited: 1)  scopus (cited: 2)

   2010
11. Zabudskii G.G., Lagzdin A.Y., “POLYNOMIAL ALGORITHMS FOR SOLVING THE QUADRATIC ASSIGNMENT PROBLEM ON NETWORKS”, Computational Mathematics and Mathematical Physics, 50:11 (2010), 1948-1955  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 6)

   2011
12. Zabudsky, G. G., Lagzdin A. Y., “Some algorithms for the quadratic assignment problem on networks”, International Conference on Operations research (OR-2011) (Zurich, Switzerland, August 30 – September 2, 2011), SPRINGER-VERLAG BERLIN, 2011, 26  mathscinet
13. Zabudskii G.G., Burlakov Yu.A., “OPTIMALNOE RAZMESchENIE OPASNOGO OB'EKTA NA PLOSKOSTI S UChETOM ZON RAZLIChNOGO VLIYaNIYa”, Omskii nauchnyi vestnik, 103 (2011) , 5 pp.  elib
14. Zabudskii G.G., Burlakov Yu.A., “OPTIMALNOE RAZMESchENIE OPASNOGO OB'EKTA NA PLOSKOSTI S UChETOM ZON RAZLIChNOGO VLIYaNIYa”, Omskii nauchnyi vestnik, 103 (2011) , 5 pp.  elib

   2010
15. G. G. Zabudskii, A. Yu. Lagzdin, “Polynomial algorithms for solving the quadratic assignment problem on networks”, Computational Mathematics and Mathematical Physics, 50:11 (2010), 1948–1955  mathnet  crossref  mathscinet  adsnasa  isi (cited: 4)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 6)  scopus (cited: 6)

   2008
16. Zabudskii G.G., Alekseenko I.V., “Optimizatsiya proektirovaniya tekhnologicheskikh skhem protsessov izgotovleniya izdelii iz mekha”, Nauchnyi vestnik Novosibirskogo gosudarstven- nogo tekhnicheskogo universiteta, 1:30 (2008), 1 , 25-30 pp.  elib (cited: 1)
17. Zabudskii G.G., Alekseenko I.V., “Primenenie metodov diskretnoi optimizatsii pri proektirovanii tekhnologicheskikh skhem protsessov shveinogo proizvodstva”, Sistemy upravleniya i informatsionnye tekhnologii, 2:32 (2008), 1 , 88–93 pp.
18. Zabudskii G.G., Alekseenko I.V., “PRIMENENIE METODOV DISKRETNOI OPTIMIZATsII PRI PROEKTIROVANII TEKhNOLOGIChESKIKh SKhEM PROTsESSOV ShVEINOGO PROIZVODSTVA”, Sistemy upravleniya i informatsionnye tekhnologii, 2:32 (2008) , 5 pp.  elib (cited: 3)

   2006
19. G. G. Zabudskii, “Model building and location problem solving in a plane with forbidden gaps”, Autom. Remote Control, 67:12 (2006), 1986–1990  mathnet  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 4)  scopus (cited: 4)
20. G. G. Zabudskii, “Optimal location of interconnected facilities on tree networks subject to distance constraints”, Computational Mathematics and Mathematical Physics, 46:3 (2006), 376–381  mathnet  crossref  mathscinet  zmath  adsnasa  elib  elib  scopus  scopus
21. Zabudskii G. G., “Computation of lower bounds on the network cost in location problems subject to distance constraints”, Computational Mathematics and Mathematical Physics, 46:2 (2006), 206–211 http://link.springer.com/article/10.1134/S0005117906120101  mathnet  crossref  mathscinet  zmath  adsnasa  elib  elib  scopus  scopus
22. Zabudskii G.G., “REShENIE ZADAChI VEBERA NA PLOSKOSTI S ZAPRESchENNYMI ZONAMI”, Vestnik Tyumenskogo gosudarstvennogo universiteta, 5 (2006) , 173-178 pp.  elib (cited: 1)
23. Zabudskii G.G., MODELI I METODY OPTIMALNOGO RAZMESchENIYa VZAIMOSVYaZANNYKh OB'EKTOV NA DISKRETNYKh MNOZhESTVAKh, avtoreferat dissertatsii na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk, IrGU, Irkutsk, 2006  elib
24. Zabudsky, G.G.a , Filimonov, D.V., “Solving minimax location problems on networks with admissible maximal distances (Conference Paper)”, 12th IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2006, and Associated Industrial Meetings: EMM'2006, BPM'2006, JT'2006;, Code 85871 IFAC Technical Committee 5.1 on Manufacturing Plant Control,TC 1.3 on Discrete Event Dynamic Systems,TC 2.4 on Optimal Control,TC 3.3 on Computers and Telematics,TC 4.1 on Components and Instruments (Saint - Etienne; France; 17 May 2006 through 19 May 2006), IFAC Proceedings Volumes (IFAC-PapersOnline) Volume 12, Issue PART 1,, http://www.mathnet.ru/personal/personpubs.phtml?option_lang=rus&wshow=personpubsedit#, 12, IFAC Technical Committee, 2006, 6

   2005
25. G. G. Zabudskii, “On the complexity of the problem of arrangement on a line with constraints on minimum distances”, Russian Math. (Iz. VUZ), 49:12 (2005), 9–12  mathnet  mathscinet  elib

   2004
26. G. G. Zabudskii, “A minimax planar location problem with forbidden zones: its solution algorithm”, Autom. Remote Control, 65:2 (2004), 241–247 http://link.springer.com/article/10.1023/B  mathnet  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 2)  elib (cited: 2)  scopus (cited: 2)  scopus (cited: 2)
27. G. G. Zabudskii, D. V. Filimonov, “Solution of a discrete minimax location problem on networks”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 5, 33–36  mathnet  mathscinet  zmath  elib

   2000
28. G. G. Zabudskii, “On the problem of the linear ordering of vertices of parallel-sequential graphs”, Diskretn. Anal. Issled. Oper., 7:1 (2000), 61–64  mathnet  mathscinet  zmath  elib

   1997
29. G. G. Zabudskii, “Algorithm for solving a problem on optimal linear ordering”, Russian Math. (Iz. VUZ), 41:12 (1997), 71–76  mathnet  mathscinet  zmath  elib

   1995
30. Zabudsky G.G., “On the One-Dimensional Space Allocation Problem with Minimal Admissible Distances . CR,Prague, 1995.-P..”, Proceedings of the 3rd IFIP WG-7.6 Working Conference on Optimization-Based Computer Aided Modelling and Design, ITTA (CR,Prague, 1994), Praga, 1995, 448-452

   1990
31. Zabudskii G. G., “O tselochislennoi postanovke odnoi zadachi razmescheniya ob'ektov na linii”, O tselochislennoi postanovke odnoi zadachi razmescheniya ob'ektov na linii, Upravlyaemye sistemy, 1990, no. 30, Tselochislennaya optimizatsiya ee prilozheniya, 1 , 35−45 pp.  mathscinet

   2017
32. G. G. Zabudskii, T. I. Keyner, “Optimizing the placement of rectangles on the plane with fixed facilities”, Autom. Remote Control, 78:9 (2017), 1651–1661  mathnet  crossref  isi  elib  elib  elib  scopus  scopus

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020