RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Bardin, Boris Sabirovich

Statistics Math-Net.Ru
Total publications: 19
Scientific articles: 18
Presentations: 3

Number of views:
This page:773
Abstract pages:1637
Full texts:312
References:188
Associate professor
Candidate of physico-mathematical sciences
E-mail:

http://www.mathnet.ru/eng/person30649
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
2019
1. B. S. Bardin, A. S. Panev, “On translational rectilinear motion of a solid body carrying a movable inner mass”, CMFD, 65:4 (2019),  557–592  mathnet
2. B. S. Bardin, E. A. Chekina, “On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions”, Nelin. Dinam., 15:4 (2019),  415–428  mathnet
3. Boris S. Bardin, Evgeniya A. Chekina, “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance”, Regul. Chaotic Dyn., 24:2 (2019),  127–144  mathnet  isi  scopus
2017
4. B. S. Bardin, E. A. Chekina, “On the stability of planar oscillations of a satellite-plate in the case of essential type resonance”, Nelin. Dinam., 13:4 (2017),  465–476  mathnet  elib
5. Boris S. Bardin, Evgeniya A. Chekina, “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Second-order Resonance Case”, Regul. Chaotic Dyn., 22:7 (2017),  808–823  mathnet  isi  scopus
2016
6. B. S. Bardin, E. A. Chekina, “On the stability of a resonant rotation of a satellite in an elliptic orbit”, Nelin. Dinam., 12:4 (2016),  619–632  mathnet  elib
7. Boris S. Bardin, Evgeniya A. Chekina, “On the Stability of Resonant Rotation of a Symmetric Satellite in an Elliptical Orbit”, Regul. Chaotic Dyn., 21:4 (2016),  377–389  mathnet  isi  scopus
2015
8. Boris S. Bardin, Victor Lanchares, “On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy”, Regul. Chaotic Dyn., 20:6 (2015),  627–648  mathnet  mathscinet  isi  scopus
9. Boris S. Bardin, Evgeniya A. Chekina, Alexander M. Chekin, “On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit”, Regul. Chaotic Dyn., 20:1 (2015),  63–73  mathnet  mathscinet  zmath  isi  scopus
2012
10. B. S. Bardin, A. A. Savin, “On orbital stability pendulum-like oscillations and rotation of symmetric rigid body with a fixed point”, Nelin. Dinam., 8:2 (2012),  249–266  mathnet
11. B. S. Bardin, T. V. Rudenko, A. A. Savin, “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev–Steklov Case”, Regul. Chaotic Dyn., 17:6 (2012),  533–546  mathnet  mathscinet  zmath
12. Boris S. Bardin, Alexander A. Savin, “On the Orbital Stability of Pendulum-like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3-4 (2012),  243–257  mathnet  mathscinet  zmath
2010
13. B. S. Bardin, “On the orbital stability of pendulum-like motions of a rigid body in the Bobylev–Steklov case”, Regul. Chaotic Dyn., 15:6 (2010),  704–716  mathnet  mathscinet  zmath
2009
14. B. S. Bardin, “On stability orbital stability of pendulum like motions of a rigid body in the Bobylev–Steklov case”, Nelin. Dinam., 5:4 (2009),  535–550  mathnet
2007
15. B. S. Bardin, “On nonlinear oscillations of Hamiltonian system in case of fourth order resonance”, Nelin. Dinam., 3:1 (2007),  57–74  mathnet
16. B. S. Bardin, “On Nonlinear Motions of Hamiltonian System in Case of Fourth Order Resonance”, Regul. Chaotic Dyn., 12:1 (2007),  86–100  mathnet  mathscinet  zmath
2005
17. B. S. Bardin, A. J. Maciejewski, M. Przybylska, “Integrability of generalized Jacobi problem”, Regul. Chaotic Dyn., 10:4 (2005),  437–461  mathnet  mathscinet  zmath
2000
18. B. S. Bardin, A. J. Maciejewski, “Non-linear Oscillations of a Hamiltonian System with One and Half Degrees of Freedom”, Regul. Chaotic Dyn., 5:3 (2000),  345–360  mathnet  mathscinet  zmath

2018
19. Bardin B. S., Panev A. S., “On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane”, Nelin. Dinam., 14:4 (2018),  519–542  mathnet  elib

Presentations in Math-Net.Ru
1. Особые и вырожденные случаи в задаче устойчивости. Приложения в классической механике и динамике спутников. Современные подходы, методы, алгоритмы.
B. S. Bardin
International School of Young Mechanics and Mathematicians "Modern nonlinear dynamics"
November 8, 2019 11:45   
2. The montion body with an internal moving point mass on a horizontal plane
B. S. Bardin, A. S. Panev
International Conference on Mathematical Control Theory and Mechanics
July 4, 2015 16:50
3. Investigation of the stability of a flat rotary motion of the satellite in an elliptical orbit
B. S. Bardin, E. A. Chekina
International Conference on Mathematical Control Theory and Mechanics
July 4, 2015 10:40

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020