Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Zadorin, Alexander Ivanovich

Total publications: 122 (119)
in MathSciNet: 74 (74)
in zbMATH: 51 (51)
in Web of Science: 47 (47)
in Scopus: 52 (52)
Cited articles: 62
Citations in Math-Net.Ru: 151
Citations in Web of Science: 148
Citations in Scopus: 196

Number of views:
This page:5846
Abstract pages:11741
Full texts:3933
References:1140
Zadorin, Alexander Ivanovich
Professor
Doctor of physico-mathematical sciences (2000)
Speciality: 01.01.07 (Computing mathematics)
E-mail:
Website: http://ofim.oscsbras.ru/?ref=staff&id=zadorin
Keywords: boundary layer, singular perturbation, difference scheme, uniform convergence, boundary condition transfer, spline-interpolation, quadrature formula.
UDC: 517.927, 519.62, 519.63, 519.632, 519.624.2
MSC: 65N06, 65L10

Subject:

difference schemes for a singular perturbed problems, problems in unbounded domains, .spline-interpolation in a boundary layer, quadrature formulas for functions with large gradients, formulas of numerical differentiation

   
Main publications:
  1. Zadorin A. I., Raznostnye skhemy dlya nelineinykh differentsialnykh uravnenii s malym parametrom v ogranichennykh i neogranichennykh oblastyakh, Dissertatsiya na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk, IVMiMG SO RAN, Novosibirsk, 2000 , 320 pp. http://elibrary.ru/item.asp?id=19150456  elib
  2. Zadorin A.I., KONEChNO-RAZNOSTNYE METODY REShENIYa URAVNENII S MALYM PARAMETROM, dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk / Nauch. ruk. Viktor Nikolaevich Ignatev, VTs SO AN SSSR, Novosibirsk, 1985 , 132 pp.  elib

http://www.mathnet.ru/eng/person30851
List of publications on Google Scholar
https://zbmath.org/authors/?q=ai:zadorin.aleksandr-ivanovich
https://mathscinet.ams.org/mathscinet/MRAuthorID/192306
https://elibrary.ru/author_items.asp?spin=6349-0734
http://orcid.org/0000-0002-2577-1181
https://publons.com/researcher/2658691
http://www.researcherid.com/rid/D-2728-2013
https://www.scopus.com/authid/detail.url?authorId=23977133800

Full list of publications:
| scientific publications | by years | by types | by times cited in WoS | by times cited in Scopus | common list |



   2021
1. A.I. Zadorin , N.A. Zadorin“. Non-Polynomial Interpolation of Functions with Large Gradients and Its Application”, Computational Mathematics and Mathematical Physics, 61:2 (2021), 167–176  mathnet  crossref  crossref  mathscinet  mathscinet  adsnasa  isi  isi  elib  scopus
2. I.A., Blatov, A.I. Zadorin“. Application a cubic spline to calculate derivatives in the presence of a boundary layer”, Journal of Physics: Conference Series, 1791 (2021), 012069 , 8 pp.  crossref  scopus
3. A.I. Zadorin, “New approaches to constructing quadrature formulas for functions with large gradients”, Journal of Physics: Conference Series, 1901:1 (2021), 012055 , 10 pp.  crossref  scopus
4. I.A., Blatov, A.I. Zadorin, E.V. Kitaeva, “Primenenie kubicheskogo splaina na setke Bakhvalova pri nalichii pogranichnogo sloya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 61:12 (2021), 1955–1973  crossref

   2020
5. I.A. Blatov, A.I. Zadorin , E.V. Kitaeva, “Generalized Spline Interpolation of Functions with Large Gradients in Boundary Layers”, Computational Mathematics and Mathematical Physics, 60:3 (2020), 411–426  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  scopus  scopus
6. A.I. Zadorin, “Optimization of nodes of Newton-Cotes formulas in the presence of an exponential boundary layer”, Journal of Physics: Conference Series, 1546 (2020), 012107 , 8 pp.  crossref  isi  scopus (cited: 1)
7. A. Zadorin, N. Zadorin, “The spline approach to the calculation of derivatives on the Bakhvalov mesh in the presence of a boundary layer.”, Proceedings of the Workshop on Applied Mathematics and Fundamental Computer Science 2020, Omsk, Russia, April 23-30, 2020, 2642, eds. Sergei S. Goncharov, Yuri G. Evtushenko, CEUR Workshop Proceedings, 2020, 1-7 www./~ceur-ws.org/Vol-2642 zadorin/paper7.pdf  scopus
8. A.I. Zadorin“. Reduction of a boundary value problem for a system of diffusion-reaction equations to problem for a finite interval // Journal of Physics: Conference Series, 2020, v. 1441, 012178.”, Journal of Physics: Conference Series, 1441 (2020), 012178 , 9 pp.  crossref  scopus

   2019
9. Alexander Zadorin, Igor Blatov, “Analogue of Cubic Spline for Functions with Large Gradients in a Boundary Layer”, Lecture Notes in Computer Science, 11386, eds. I. Dimov, L. Vulkov, Springer, 2019, 654Ц662  crossref  zmath  scopus
10. I.A. Blatov , A.I. Zadorin , E.V. Kitaeva, “Approximation of a Function and Its Derivatives on the Basis of Cubic Spline Interpolation in the Presence of a Boundary Layer”, Computational Mathematics and Mathematical Physics, 59:3 (2019), 343–354  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)  elib  scopus (cited: 5)
11. A. Zadorin, S. Tikhovskaya, “Formulas of numerical differentiation on a uniform mesh for functions with the exponential boundary layer”, International Journal of Numerical Analysis and Modeling, 16:4 (2019), 590-608 www.math.ualberta.ca/ijnam/Volume-16-2019/No-4-19/2019-04-04.pdf  mathscinet  zmath  isi (cited: 2)  scopus
12. I.A. Blatov , A.I. Zadorin, “Approaches to the calculation of derivatives of functions with large gradients in the boundary layer under the values at the grid nodes”, Journal of Physics: Conference Series, 1158:1 (2019), 022029 , 6 pp.  crossref  isi (cited: 1)  scopus (cited: 1)
13. I.A. Blatov, A.I. Zadorin, E.V. Kitaeva, “An application of the cubic spline on Shishkin mesh for the approximation of a function and its derivatives in the presence of a boundary layer”, Journal of Physics: Conference Series, 1210 (2019), 012017 , 8 pp.  crossref  mathscinet  isi  scopus (cited: 2)
14. V.P. IlТin, A.I. Zadorin, “Adaptive formulas of numerical differentiation of functions with large gradients Journal of Physics: Conference Series”, Journal of Physics: Conference Series, 1260 (2019), 042003 , 7 pp.  crossref  isi (cited: 2)  scopus (cited: 2)
15. I.A. Blatov, N.V, Dobrobog, A.I. Zadorin, Metody splain-funktsii dlya zadach s pogranichnym sloem, Povolzhskii gosudarstvennyi universitet telekommunikatsii i informatiki, Samara, 2019 , 258 pp.  elib
16. .Zadorin A.I., Ilin V.P., “Adaptivnye formuly chislennogo differentsirovaniya pri nalichii pogranichnogo sloya”, Trudy Mezhdunarodnoi konferentsii " Aktualnye problemy vychislitelnoi i prikladnoi matematikiФ. (Novosibirsk, IVM i MG SO RAN, 1 Ц 5 iyulya 2019 g.,), izd–vo IVM i MG SO RAN,, 2019, 144–150  crossref  elib

   2018
17. I.A. Blatov , A.I. Zadorin , E.V. Kitaeva, “On the Parameter–Uniform Convergence of Exponential Spline Interpolation in the Presence of a Boundary Layer”, Computational Mathematics and Mathematical Physics, 58:3 (2018), 348–363  mathnet  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  elib  scopus (cited: 7)
18. I.A. Blatov , A.I. Zadorin , E.V. Kitaeva, “An application of the exponential spline for the approximation of a function and its derivatives in the presence of a boundary layer”, Journal of Physics: Conference Series, 1050:1 (2018), 012012 , 7 pp.  crossref  isi (cited: 1)  scopus (cited: 2)
19. A.I. Zadorin, “Analysis of Numerical Differentiation Formulas in a Boundary Layer on a Shishkin Grid”, Numerical Analysis and Applications, 11:3 (2018), 193–203  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib  elib  scopus (cited: 3)
20. Blatov I.A., Zadorin A.I., Kitaeva E.V., “Approksimatsiya proizvodnykh funktsii s bolshimi gradientami na osnove splainovoi interpolyatsii”, Trudy Mezhdunarodnoi konferentsii "Vychislitelnaya matematika i matematicheskaya geofizikaФ, posvyaschennoi 90-letiyu so dnya rozhdeniya akademika A.S. Alekseeva. (Novosibirsk, IVM i MG SO RAN, 8 Ц 12 oktyabrya 2018 g.,), izd–vo IVM i MG SO RAN,, Novosibirsk, 2018, 60–66  elib

   2017
21. I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Cubic spline interpolation of functions with high gradients in boundary layers”, Comput. Math. Math. Phys., 57:1 (2017), 7–25  mathnet  crossref  crossref  isi (cited: 13)  elib  elib  scopus (cited: 16)
22. A. Zadorin, “Two-Dimensional Interpolation of Functions with Large Gradients in Boundary Layers”, Lecture Notes in Computer Science, 10187, eds. I. Dimov, L. Vulkov, Springer, 2017, 760Ц768  crossref  mathscinet  zmath  isi  scopus
23. I. A. Blatov, E. V. Kitaeva , A. I. Zadorin, “On the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer”, Numerical Analysis and Applications, 10:2 (2017), 108–119  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  elib  scopus (cited: 6)
24. I. A. Blatov , A. I. Zadorin, E. V. Kitaeva, “Parabolic spline interpolation for functions with large gradient in the boundary layer”, Siberian Mathematical Journal, 58:4 (2017), 578–590  mathnet  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)  elib  elib  scopus (cited: 7)
25. A. I. Zadorin, “Kubaturnye formuly dlya funktsii dvukh peremennykh s bolshimi gradientami v pogranichnykh sloyakh”, Sibirskie elektronnye matematicheskie izvestiya, 14 (2017), 927–936  mathnet  crossref  zmath  isi  scopus
26. A. I. Zadorin, “Splain-interpolyatsiya pri nalichii pogranichnogo sloya”, Informatsionnyi byulleten Omskogo nauchno-obrazovatelnogo tsentra OmGTU i IM SO RAN v oblasti matematiki i informatiki, 1, eds. A.V. Zykina, OmGTU, Omsk, 2017, 35–38  elib
27. I.A. Blatov, A.I. Zadorin, E.V. Kitaeva, “Ob interpolirovanii L-splainami funktsii s bolshimi gradientami v pogranichnom sloe”, Trudy Mezhdunarodnoi konferentsii po vychislitelnoi i prikladnoi matematike “VPMТ17” v ramkakh “Marchukovskikh nauchnykh chtenii”, (Novosibirsk, 25 iyunya Ц 14 iyulya 2017 g.), IVM i MG SO RAN, Novosibirsk, 2017, 100-105 http://conf.nsc.ru/cam17/ru/proceedings  elib
28. S.V. Tikhovskaya, A.I. Zadorin, “Formuly chislennogo differentsirovaniya funktsii s bolshimi gradientami”, Trudy Mezhdunarodnoi konferentsii po vychislitelnoi i prikladnoi matematike "VPMТ17 v ramkakh "Marchukovskikh nauchnykh chtenii (Novosibirsk, 25 iyunya Ц 14 iyulya 2017 g.), IVM i MG SO RAN, Novosibirsk, 2017, 878–884 http://conf.nsc.ru/cam17/ru/proceedings  elib

   2016
29. A. I. Zadorin, N. A. Zadorin, “Polynomial interpolation of the function of two variables with large gradients in the boundary layers”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:1 (2016), 40–50  mathnet  mathscinet  isi  elib
30. Zadorin, A.I., “Gauss quadrature on a piecewise uniform mesh for functions with large gradients in a boundary layer”, Siberian Electronic Mathematical Reports, 13:1 (2016), 101-110  mathnet  crossref  mathscinet  zmath  elib  scopus (cited: 1)
31. A. I. Zadorin, “Interpolation formulas for functions with large gradients in the boundary layer and their application”, Model. i analiz inform. sistem, 23:3 (2016), 377–384  mathnet (cited: 1)  crossref  mathscinet  mathscinet  elib
32. Zadorin, A.I., Zadorin, N. A., “Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component”, COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 56:3 (2016), 358-366 http://link.springer.com/article/10.1134  mathnet  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib  scopus (cited: 4)
33. S. V. Tikhovskaya , A. I. Zadorin, “Analysis of polynomial interpolation of the function of two variables with large gradients in the parabolic boundary layers”, Eighth International Conference on Application of Mathematics in Technical and Natural Sciences (Albena, Bulgaria, 22.06 Ц 27.06.2016), AIP Conference Proceedings, 1773, eds. Todorov, MD, AIP Publishing LLC, 2016, 100008-1–100008-9  crossref  adsnasa  isi (cited: 2)  elib  scopus (cited: 2)
34. Blatov I. A., Kitaeva E. V., Zadorin A. I., “On interpolation by cubic splines of the functions with a boundary layers”, CEUR Workshop Proceedings, 1638 (2016), 515-520  crossref  scopus (cited: 1)
35. A. I. Zadorin, “Interpolyatsionnye formuly dlya funktsii s bolshimi gradientami v pogranichnykh sloyakh”, Prikladnaya matematika i fundamentalnaya informatika, 3 (2016), 11–15  elib
36. A. I. Zadorin, “Dvumernye interpolyatsionnye formuly dlya funktsii s bolshimi gradientami v pogranichnykh sloyakh”, Setochnye metody dlya kraevykh zadach i prilozheniya. Materialy Odinnadtsatoi Mezhdunarodnoi konferentsii., Kazanskii (Privolzhskii) federalnyi universitet, Kazan, 2016, 133–138  elib

   2015
37. A. I. Zadorin, S. V. Tikhovskaya, N. A. Zadorin, “A two-grid method for elliptic problem with boundary layers”, Applied Numerical Mathematics, 93 (2015), 270-278  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 3)  scopus (cited: 9)

   2016
38. Zadorin, A.I., “Interpolation of a function of two variables with large gradients in boundary layers”, Lobachevskii Journal of Mathematics, 37:3 (2016), 349-359 http://link.springer.com/article/10.1134  mathnet  crossref  mathscinet  isi (cited: 6)  elib  scopus (cited: 7)

   2015
39. A.I. Zadorin, “Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids”, Numerical Analysis and Applications, 8:3 (2015), 235-247  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus (cited: 12)
40. A. Zadorin, “The Analysis of Lagrange Interpolation for Functions with a Boundary Layer Component”, Lecture Notes in Computer Science, 9045, Springer, 2015, 426–432  crossref  mathscinet  zmath  isi  scopus
41. S.V. Tikhovskaya , A. I. Zadorin, “A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem”, Seventh Conference of the Euro-American Consortium for Promoting the Application of Mathematics in Technical and Natural Sciences (Albena, BULGARIA Date: JUN 28.06 Ц 03.07 2015), AIP Conference Proceedings, 1684, eds. Todorov, MD, American Institute of Physics, 2015, 090007  crossref  mathscinet  isi (cited: 4)  scopus (cited: 6)

   2014
42. A. I. Zadorin, N. A. Zadorin, “Simpson rule and its modifications for a function with a boundary layer component”, Siberian Elektronic Mathematical Reports, 11 (2014), 258–267  mathnet  mathscinet  elib
43. Zadorin A.I., “Modification of the Euler Quadrature Formula for Functions with a Boundary-Layer Component”, Computational Mathematics and Mathematical Physics, 54:10 (2014), 1489-1498  mathnet  mathnet  crossref  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
44. A. I. Zadorin, “Analog kubicheskogo splaina dlya interpolyatsii funktsii s pogransloinoi sostavlyayuschei”, Setochnye metody dlya kraevykh zadach i prilozheniya. Materialy Desyatoi Mezhdunarodnoi konferentsii, Kazanskii (Privolzhskii) federalnyi universitet, Kazan, 2014, 305–310  elib

   2013
45. A. I. Zadorin, S. V . Tikhovskaya, “Solving a Second-Order Nonlinear Singular Perturbation Ordinary Differential Equation by a Samarskii Scheme”, Numerical Analysis and Applications, 6:1 (2013), 9–23  mathnet  crossref  mathscinet  zmath  elib (cited: 1)  elib (cited: 1)  scopus (cited: 6)
46. A. I. Zadorin, S. V. Tikhovskaya, “A two-grid method for a nonlinear singular perturbation boundary value problem on the Shishkin scheme”, Sib. Zh. Ind. Mat., 16:1 (2013), 42–55  mathnet  mathscinet  elib
47. A. I. Zadorin, N. A. Zadorin, “Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh”, Siberian Elektronic Mathematical Reports, 10 (2013), 491–503  mathnet  mathscinet  elib
48. A. I. Zadorin, N. A. Zadorin, “An analogue of Newton–Cotes formula with four nodes for a function with a boundary-layer component”, Num. Anal. Appl., 6:4 (2013), 268–278 http://link.springer.com/article/10.1134  mathnet  crossref  mathscinet  elib (cited: 2)  elib (cited: 2)  scopus (cited: 4)
49. A. Zadorin. N. Zadorin, “Quadrature Formula with Five Nodes for Functions with a Boundary Layer Component”, Lecture Notes in Computer Science, 8236, Springer, 2013, 540– 546  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 7)
50. A. I. Zadorin, “Cubature formulas for a two-variable function with boundary-layer components”, Comput. Math. Math. Phys., 53:12 (2013), 1808–1818  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus (cited: 2)

   2012
51. A. I. Zadorin, N. A. Zadorin, “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Sibirskie elektronnye matematicheskie izvestiya, 9 (2012), 445-455 http://www.mathnet.ru/links/1d010011c3259911b08b588999ddec26/semr376.pdf  mathnet (cited: 15)  mathscinet  zmath  isi  elib (cited: 6)
52. A. I. Zadorin, N. A. Zadorin, “Interpolyatsiya funktsii s uchetom pogranichnogo sloya i ee primeneniya”, Setochnye metody dlya kraevykh zadach i prilozheniya. Materialy Devyatoi Vserossiiskoi konferentsii, eds. otv. redaktor I. B. Badriev; sost. V. V. Banderov., Otechestvo, Kazan, 2012, 147–151  elib

   2011
53. Zadorin, A.I. , Zadorin, N.A., “Interpolation of functions with the boundary layer components and its application in a two-grid method”, Siberian Electronic Mathematical Reports, 8:1 (2011), 247-267  mathnet  mathscinet  zmath  elib (cited: 2)
54. A. I. Zadorin, S. V. Tikhovskaya, “Analysis of a difference scheme for a singular perturbation Cauchy problem on refined grids”, Num. Anal. Appl., 4:1 (2011), 36–45  mathnet  crossref  mathscinet  mathscinet  elib  elib  scopus (cited: 3)
55. A.I. Zadorin, “Spline interpolation of functions with a boundary layer component”, International Journal of Numerical Analysis & Modeling - Series B, 2:2-3 (2011), 262-279  mathscinet  zmath
56. A. I. Zadorin, N. A. Zadorin, “Quadrature formulas for functions with a boundary-layer component”, Computational Mathematics and Mathematical Physics, 51:11 (2011), 1837-1846  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 9)  elib (cited: 5)  elib (cited: 5)  scopus (cited: 10)

   2013
57. Zadorin, A.I. , Tikhovskaya, S.V., “Difference Scheme on a Uniform Grid for the Singularly Perturbed Cauchy Problem”, Journal of Mathematical Sciences (United States), 195:6 (2013), 865-872  mathnet  crossref  mathscinet  elib  scopus (cited: 3)

   2011
58. A. I. Zadorin , M. V. Guryanova, “Analogue of a Cubic Spline for a Function with a Boundary Layer Component”, Proceedings of the Fifth Conference on Finite Difference Methods: Theory and Applications, 2010, Rousse University, Rousse, Bulgaria, 2011, 166–173  adsnasa

   2010
59. A. I. Zadorin, N. A. Zadorin, “Spline interpolation on a uniform grid for a function with a boundary layer component”, Comput. Math. Math. Phys., 50:2 (2010), 211–223  mathnet  crossref  mathscinet  adsnasa  isi (cited: 16)  elib (cited: 9)  elib (cited: 9)  scopus (cited: 18)
60. L.G. Vulkov, A.I. Zadorin, “Two-Grid Algorithms for an ordinary second order equation with exponential boundary layer in the solution”, International Journal of Numerical Analysis and Modeling, 7:3 (2010), 580-592  mathscinet  zmath  isi (cited: 15)  elib (cited: 5)

   2009
61. L.G. Vulkov, A.I. Zadorin, “Two-Grid Algorithms for the Solution of 2D Semilinear Singularly Perturbed Convection-Diffusion Equations Using an Exponential Finite Difference Scheme”, Conference: 1st International Conference on Application of Mathematics in Technical and Natural Sciences, Euro Amer Consortium Promoting Applicat Math Tech & Nat Sci APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (Sozopol, BULGARIA Date: JUN 22-27 2009), AIP Conference Proceedings, 1186, eds. Todorov, MD; Christov, CI, American Institute of Physics, 2009, 371-379  crossref  mathscinet  adsnasa  isi (cited: 6)  elib  scopus (cited: 10)
62. A.I. Zadorin, “Interpolation Method for a Function with a Singular Component”, Lecture Notes in Computer Science, 5434, Springer, 2009, 612-619  crossref  zmath  isi (cited: 7)  elib (cited: 3)  scopus (cited: 9)
63. L.G. Vulkov, A.I. Zadorin, “A Two-Grid Algorithm for Solution of the Difference Equations of a System of Singular Perturbed Semilinear Equations // Lect. Notes in Computer Science, 2009, v. 5434, Springer-Verlag, Berlin, p. 580-587.”, Lecture Notes in Computer Science, 5434, Springer, 2009, 580-587  crossref  mathscinet  zmath  isi (cited: 1)  elib (cited: 2)  scopus (cited: 3)

   2008
64. A. I. Zadorin, “Refined-mesh interpolation method for functions with a boundary-layer component”, Comput. Math. Math. Phys., 48:9 (2008), 1634–1645  mathnet  crossref  mathscinet  isi (cited: 7)  elib (cited: 3)  elib (cited: 3)  scopus (cited: 6)
65. L.G. Vulkov, A.I. Zadorin, “Two-grid Interpolation Algorithms for Difference Schemes of Exponential Type for Semilinear Diffusion Convection-Dominated Equations”, Conference Proceedings, 1067, American Institute of Physics, 2008, 284-292  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  scopus (cited: 7)
66. A.I. Zadorin, A.V. Chekanov, “Numerical Method for Three-Point Vector Difference Schemes on Infinite Interval”, International Journal of Numerical Analysis and Modeling, 5:2 (2008), 190-206  mathscinet  isi (cited: 3)  elib (cited: 3)
67. A. I. Zadorin, “Metod interpolyatsii dlya funktsii dvukh peremennykh s pogransloinoi sostavlyayuschei”, Vychislitelnye tekhnologii, 13:3 (2008), 45-53  zmath  elib
68. A.I. Zadorin, “Splain-interpolyatsiya dlya funktsii s pogransloinoi sostavlyayuschei”, Vychislitelnye tekhnologii, 13:spetsialnyi vypusk, chast 2 (2008), 135-139
69. A.I. Zadorin, A.S Kirienko, “Analiz kubicheskikh splainov dlya zadachi s pogranichnym sloem // Vychislitelnye tekhnologii, 2008, t. 13, spets. vypusk 2, s. 140-146.”, Vychislitelnye tekhnologii, 13:spetsialnyi vypusk, chast 2 (2008), 140-146

   2007
70. A. I. Zadorin, “Method of interpolation for a boundary layer problem”, Sib. Zh. Vychisl. Mat., 10:3 (2007), 267–275  mathnet  elib

   2006
71. A. I. Zadorin, “Numerical Method for Blasius Equation on an infinite Interval”, Proceedings of an International Conference on Boundary and Interior Layers - Computational and Asymptotic Methods, Minisymposium Robust Numerical Methods for Problems with Layer Phenomena and Applications, Georg-August University Gottingen, 2006, 1–7 \href{www.num.math.uni-goettingen.de/bail/documents/proceedings/zadorin.pdf}

   2005
72. A.I. Zadorin , O.V. Kharina, “Numerical Method for a Chemical Nonlinear Reaction Boundary Value Problem”, Lecture Notes in Computer Science, 3401, Springer, 2005, 583-589  crossref  zmath  isi  elib  scopus (cited: 1)

   2004
73. A. I. Zadorin, O. V. Kharina, “Numerical method for a system of linear equations of second order with a small parameter on a semi-infinite interval”, Sib. Zh. Vychisl. Mat., 7:2 (2004), 103–114  mathnet  mathscinet  zmath  elib
74. A.I. Zadorin , O.V. Kharina, “Chislennyi metod dlya nelineinogo uravneniya s pogranichnym sloem, sootvetstvuyuschim zone khimicheskoi reaktsii”, Vychislitelnye tekhnologii, 9:spetsialnyi vypusk, chast2 (2004), 215-221
75. A. V. Chekanov , A. I. Zadorin, “Numerical method for a singular perturbed elliptic equation in a strip // Proceedings of an International Conference on Boundary and Interior Layers - Computational and Asymptotic Methods, ONERA, Toulouse, 2004, Session 5, p. 1-6.”, An international Conference on Boundary And International Layers - Computational&Asymptotic Methods (Toulouse, 5–9 July 2004), ONERA, Toulouse, 2004, 1–6

   2003
76. A. I Zadorin , A. V. Chekanov, “Reduktsiya vektornoi trekhtochechnoi skhemy na beskonechnom intervale k skheme s konechnym chislom uzlov”, Vychislitelnye tekhnologii, 8:3 (2003), 54-70  elib
77. A.I. Zadorin , O.V. Kharina, “Raznostnaya skhema dlya parabolicheskogo uraneniya s sosredotochennym istochnikom na beskonechnom intervale”, Vychislitelnye tekhnologii, 8:spetsialnyi vypusk (2003), 32-39
78. A.I. Zadorin, Metod vydeleniya mnogoobrazii dlya kraevykh zadach na beskonechnom intervale. // Uchebnoe posobie, Izdatelstvo Omskogo gosudarstvennogo universiteta, Omsk, 2003 , 73 pp.

   2002
79. A. I. Zadorin, A. V. Chekanov, “Reduction of a three-point difference scheme on the infinite interval to a scheme with a finite number of grid nodes”, Sib. Zh. Vychisl. Mat., 5:2 (2002), 149–161  mathnet  zmath  elib
80. A.I. Zadorin, “Chislennyi metod dlya parabolicheskogo uravneniya s malym parametrom na polubeskonechnom intervale”, Vychislitelnye tekhnologii, 7:spetsialnyi vypusk (2002), 9-16
81. A. I. Zadorin, “A method of lines for an elliptic problem with boundary layers along a strip”, The International Conference on Computational Mathematics Proceedings: Part 2 (Novosibirsk, 24–28 June 2002), eds. Gennadi A. Mikhailov, Valeri P. Il'in, Yuri M. Laevsky, IGM&MG Publisher, Novosibirsk, 2002, 728–732.  mathscinet
82. O. V. Harina , A. I. Zadorin, “Numerical solution of a boundary value problem for a system of equations with a small parameter on a half-infinite interval”, The International Conference on Computational Mathematics Proceedings: Part 2 (Novosibirsk, 24–28 June 2002), ICM&MG Publisher, Novosibirsk, 2002, 449-453  mathscinet
83. A. I. Zadorin, “A second order scheme for nonlinear singularly perturbed two-point boundary value problem”, Differential equations and mathematical modelling, Nova Sci. Publ, Huntington, 2002, 189–196  mathscinet  zmath
84. A.I. Zadorin, Raznostnye skhemy dlya zadach s pogranichnym sloem. // Uchebnoe posobie, Izdatelstvo Omskogo gosudarstvennogo universiteta, Omsk, 2002 , 118 pp.

   2001
85. A. I. Zadorin, “Reduction from a semi-infinite interval to a finite interval of a nonlinear boundary value problem for a system of second-order equations with a small parameter”, Siberian Math. J., 42:5 (2001), 884–892  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus (cited: 2)
86. J.D. Kandilarov , L.G. Vulkov , A.I. Zadorin, “A method of lines approach to the numerical solution of singularly perturbed elliptic problems”, Lecture Notes in Computer Science, 1988, Springer, 2001, 451-458  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)  scopus (cited: 2)
87. A.I. Zadorin, “Raznostnaya skhema dlya zadachi so stepennym pogransloem”, Vychislitelnye tekhnologii, 6:spetsialnyi vypusk, chast2 (2001), 290-297
88. O. V. elichko, A. I. Zadorin, “Numerical solution of a system of equations with a small parameter and a point source on an infinite interval”, Mathematical structures and modeling, 2001, no. 7, 17–27  mathscinet  elib
89. A.I. Zadorin, D.N. Lavrov , O.V. Chervyakov, Izdatelskaya sistema LATEX 2e dlya khimikov. // Uchebno-metodicheskoe posobie, Izdatelstvo Omskogo gosudarstvennogo universiteta, 2001 , 100 pp.

   2000
90. A. I. Zadorin, “Reduction of a boundary value problem for a second-order linear vector difference equation to a finite number of grid points”, Comput. Math. Math. Phys., 40:4 (2000), 519–528  mathnet  mathscinet  zmath  elib (cited: 2)  elib (cited: 2)
91. A.I. Zadorin, “Trekhtochechnaya raznostnaya skhema na polubeskonechnom intervale”, Vychislitelnye tekhnologii, 5:2 (2000), 46-55  mathscinet  zmath  elib (cited: 1)
92. Zadorin, AI, “Numerical solution of the nonlinear differential equation with a small parameter on the infinite interval”, ANALYTICAL AND NUMERICAL METHODS FOR CONVECTION-DOMINATED AND SINGULARLY PERTURBED PROBLEMS, Workshop on Analytical and Computational Methods for Convection-Dominated and Singularly Perturbed Problems (LOZENETZ, BULGARIA Date: AUG 27-31, 1998), ISBN: 1-56072-848-5, eds. Vulkov, LG; Miller, JJH; Shishkin, GI, NOVA SCIENCE PUBLISHERS,, INC, 400 OSER AVE, STE 1600, HAUPPAUGE, NY 11788-3635 USA, 2000, 259-264  mathscinet  isi
93. Zadorin A. I., Raznostnye skhemy dlya nelineinykh differentsialnykh uravnenii s malym parametrom v ogranichennykh i neogranichennykh oblastyakh, Avtoreferat dissertatsii na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk, Izdatelstvo IVM i MG SO RAN, Novosibirsk, 2000
94. Zadorin A. I., Raznostnye skhemy dlya nelineinykh differentsialnykh uravnenii s malym parametrom v ogranichennykh i neogranichennykh oblastyakh, Dissertatsiya na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk, IVMiMG SO RAN, Novosibirsk, 2000 , 320 pp. http://elibrary.ru/item.asp?id=19150456  elib
95. A. I. Zadorin, “A difference scheme for a problem with a power boundary layer”, Mathematical structures and modeling, 2000, no. 6, 36–42  mathscinet  zmath  elib
96. A. I. Zadorin, “A difference scheme for an elliptic equation with a power boundary layer in a strip”, Mathematical structures and modeling, 2000, no. 5, 11–17  mathscinet  zmath  elib
97. O. V. Velichko, A. I. Zadorin, “Numerical solution of an equation with a point source on an infinite interval”, Mathematical structures and modeling, 2000, no. 5, 5–10  mathscinet  zmath  elib

   1999
98. A. I. Zadorin, “The transfer of the boundary condition from the infinity for the numerical solution to the second order equations with a small parameter”, Sib. Zh. Vychisl. Mat., 2:1 (1999), 21–35  mathnet  mathscinet  zmath  elib
99. A.I Zadorin, “Chislennoe reshenie ellipticheskogo uravneniya s pogranichnymi sloyami v polubeskonechnoi polose”, Vychislitelnye tekhnologii, 4:1 (1999), 33-47  mathscinet  zmath  elib

   1998
100. A. I. Zadorin, “Numerical solution of the equation with a small parameter and a point source on the infinite interval”, Sib. Zh. Vychisl. Mat., 1:3 (1998), 249–260  mathnet  mathscinet  zmath
101. A. I. Zadorin, “Numerical solution of an equation with a small parameter on an infinite interval”, Comput. Math. Math. Phys., 38:10 (1998), 1602–1614  mathnet  mathscinet  zmath  elib
102. A. I. Zadorin, “Numerical solution of a boundary value problem for a set of equations with a small parameter”, Comput. Math. Math. Phys., 38:8 (1998), 1201–1211  mathnet  mathscinet  zmath  elib
103. A. I. Zadorin, “Transfer of a boundary condition from infinity in the case of a second-order linear equation with a small parameter”, Mathematical structures and modeling, 1998, no. 1, 13–19  mathscinet  zmath

   1997
104. A.I. Zadorin, “Monotonnaya skhema Samarskogo dlya obyknovennogo uravneniya vtorogo poryadka s malym parametrom v sluchae tretei kraevoi zadachi”, Vychislitelnye tekhnologii, 2:5 (1997), 35-45  mathscinet  elib

   1994
105. A. I. Zadorin, “Numerical solution of a nonlinear ordinary equation with a boundary layer that corresponds to the reaction zone. (Russian)”, Fundamental and applied mathematics, Omsk. Gos. Univ., Omsk, 1994, 107–111  mathscinet  zmath

   1993
106. A. I. Zadorin, “Chislennoe reshenie ellipticheskogo uravneniya s parabolicheskim pogransloem”, Modelirovanie v mekhanike, 7:1 (1993), 52–59  mathscinet

   1991
107. A. I. Zadorin, V. N. Ignat'ev, “Numerical solution of a quasilinear second-order singularly perturbed equation”, Computational Mathematics and Mathematical Physics, 31:1 (1991), 112–116  mathnet  mathscinet  zmath  isi
108. A.I. Zadorin, “Chislennoe reshenie obyknovennogo uravneniya vtorogo poryadka so slabo vyrazhennym pogranichnym sloem”, Modelirovanie v mekhanike, 5:1, ITPM SO AN SSSR, 1991, 141-152  mathscinet

   1990
109. ZADORIN, AI (ZADORIN, AI); IGNATYEV, VN (IGNATYEV, VN),, “A DIFFERENCE SCHEME FOR A NONLINEAR SINGULARLY PERTURBED 2ND-ORDER EQUATION”, USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 30:5 (1990), 107-111  mathnet  mathnet  crossref  mathscinet  zmath  zmath  isi  elib  scopus
110. A. I. Zadorin, Raznostnaya skhema dlya obyknovennogo singulyarno vozmuschennogo uravneniya vtorogo poryadka, Preprint№899, VTs SO AN SSSR, VTs SO AN SSSR, Novosibirsk, 1990 , 18 pp.  mathscinet

   1989
111. A.I. Zadorin, “Raznostnaya skhema dlya samosopryazhennoi singulyarno vozmuschennoi tretei kraevoi zadachi”, Modelirovanie v mekhanike, 3:1, ITPM SO AN SSSR, 1989, 77-82  mathscinet
112. A.I. Zadorin, “Zadorin A.I.Chislennoe reshenie kvazilineinogo uravneniya s malym parametrom. // Modelirovanie v mekhanike, 1989,t.3, N 2, c. 89-94.”, Modelirovanie v mekhanike, 3:2, ITPM SO AN SSSR, 1989, 89-94  mathscinet

   1986
113. ZADORIN, AI; IGNATEV, VN, “NUMERICAL-SOLUTION OF THE SINGULAR PERTURBATION 3RD BOUNDARY-PROBLEM FOR THE GENERAL EQUATION OF THE 2ND-ORDER”, IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1986, no. 11, 20-26  mathnet  mathscinet  zmath  isi (cited: 1)
114. V.N. Ignat'ev , A.I. Zadorin, “finite-difference method for calculation of a two-dimensional laminar flame”, Combustion, Explosion and Shock waves, 22:4 (1986), 423-425  crossref  isi  scopus
115. A.I. Zadorin, “7. Zadorin A.I.Chislennoe reshenie kvazilineinogo singulyarno vozmuschennogo uravneniya. // Chislennye metody mekhaniki sploshnoi sredy, Novosibirsk, 1986, t.17, # 6, c. 35-44.”, Chislennye metody mekhaniki sploshnoi sredy, 17:6, ITPM SO AN SSSR, 1986, 35-44  mathscinet
116. V. N. Ignatev , A. I. Zadorin, O nekotorykh metodakh chislennogo resheniya nelineinoi singulyarno- vozmuschennoi kraevoi zadachi. // Preprint VTs SO AN SSSR, Novosibirsk, 1986, # 677., Preprint №677, VTs SO AN SSSR, VTs SO AN SSSR, Novosibirsk, 1986 (to appear) , 28 pp.  mathscinet

   1985
117. Zadorin A.I., KONEChNO-RAZNOSTNYE METODY REShENIYa URAVNENII S MALYM PARAMETROM, dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk / Nauch. ruk. Viktor Nikolaevich Ignatev, VTs SO AN SSSR, Novosibirsk, 1985 , 132 pp.  elib

   1984
118. ZADORIN, AI, “NUMERICAL-SOLUTION OF THE 3RD BOUNDARY-VALUE PROBLEM FOR AN EQUATION WITH A SMALL PARAMETER”, USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 24:4 (1984), 28-33  mathnet  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 1)
119. A.I. Zadorin, “O suschestvovanii i edinstvennosti resheniya nekotorykh raznostnykh zadach dlya kvazilineinogo obyknovennogo differentsialnogo uravneniya s malym parametrom”, Chislennye metody mekhaniki sploshnoi sredy, 15:1, ITPM SO AN SSSR, 1984, 33-44  mathscinet

   1983
120. A.I. Zadorin, “O vydelenii pogranichnogo sloya i sochetanii nachalnykh i kraevykh zadach pri reshenii singulyarno vozmuschennykh uravnenii”, Chislennye metody mekhaniki sploshnoi sredy, 14:1, ITPM SO AN SSSR, 1983, 42-50  mathscinet
121. ZADORIN, AI; IGNATEV, VN, “ON THE NUMERICAL-SOLUTION OF EQUATIONS WITH A SMALL PARAMETER IN THE HIGHEST DERIVATIVE”, USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 23:3 (1983), 10.1016/S0041-5553(83)80103-7 , 66-71 pp.  mathnet (cited: 1)  crossref  mathscinet  zmath  isi  scopus

   1982
122. V. N. Ignatev , A. I. Zadorin, “Regulyarizatsiya raznostnykh skhem s pomoschyu pervogo differentsialnogo priblizheniya pri chislennom reshenii uravnenii s malym parametrom pri starshei proizvodnoi”, Chislennye metody i zadachi optimizatsii, Tomsk, TGU, 1982, 5–11  mathscinet

Organisations
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022