RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Lapin Alexandr Vasil'evich

Statistics Math-Net.Ru
Total publications: 48
Scientific articles: 47
Cited articles: 17
Citations in Math-Net.Ru: 30

Number of views:
This page:1108
Abstract pages:4509
Full texts:1602
References:346
Professor
Doctor of physico-mathematical sciences (1991)
Speciality: 01.01.07 (Computing mathematics)
E-mail: , , ,
Website: http://www.ksu.ru/persons/9402.ru.html

Subject:

Computational mathematics.


http://www.mathnet.ru/eng/person31232
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=199243

Publications in Math-Net.Ru
1. Solution of an elliptic optimal control problem with pointwise and nonlocal state constraints
A. V. Lapin, D. G. Zalyalov
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 4,  23–34
2. Numerical solution of a parabolic optimal control problem with point-wise state constraints
A. V. Lapin, A. A. Platonov
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:1 (2016),  81–89
3. Penalty method for the state equation for an elliptical optimal control problem
A. V. Lapin, D. G. Zalyalov
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7,  36–48
4. Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution
N. S. Kashtanov, A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 7,  10–24
5. Solving the problem of Bingham fluid flow in cylindrical pipeline
A. V. Lapin, A. D. Romanenko
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2,  82–86
6. Using domain decomposition method and non-matching grids for solving some variational inequalities
M. A. Ignatieva, A. V. Lapin
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:2 (2015),  68–78
7. Numerical Solution of an Optimal Control Problem Governed by a Linear Elliptic Equation with Non-Local State Constraints
D. G. Zalyalov, A. V. Lapin
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:3 (2012),  129–144
8. The solution of a state constrained optimal control problem by the right-hand side of an elliptic equation
A. V. Lapin, M. G. Khasanov
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 152:4 (2010),  56–67
9. Domain decomposition method for Signorini problem in mixed hybrid formulation
M. A. Ignat'eva, A. V. Lapin, N. V. Lapin
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:3 (2006),  80–93
10. Mathematical model and numerical solution of filtration problem for two immiscible fluids
R. F. Kadyrov, A. V. Lapin
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148:2 (2006),  65–76
11. Solution of the obstacle problem by domain decomposition method
A. V. Lapin, M. A. Ignat'eva
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:3 (2005),  112–126
12. Application of variational methods in inverse boundary value problems for analytic functions
A. M. Elizarov, A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 7,  30–46
13. Identification of nonlinear coefficient in a transport equation
A. V. Lapin, S. A. Lapin
Lobachevskii J. Math., 14 (2004),  69–84
14. Numerical experiments with multilevel Subdomain decomposition method
E. Laitinen, A. V. Lapin, J. Pieskä
Lobachevskii J. Math., 13 (2003),  67–80
15. Using explicit schemes for control problems in continuous casting process
R. F. Kadyrov, E. Laitinen, A. V. Lapin
Lobachevskii J. Math., 13 (2003),  25–38
16. Mixed hybrid finite element scheme for stefan problem with prescribed convection
M. A. Ignat'eva, A. V. Lapin
Lobachevskii J. Math., 13 (2003),  15–24
17. On 3D dynamic control of secondary cooling in continuous casting process
R. Z. Dautov, R. F. Kadyrov, E. Laitinen, A. V. Lapin, J. Pieskä, V. Toivonen
Lobachevskii J. Math., 13 (2003),  3–13
18. On the parallel domain decomposition algorithms for time-dependent problems
A. V. Lapin, J. Pieskä
Lobachevskii J. Math., 10 (2002),  27–44
19. Large splitting iterative methods and parallel solution of variational inequalities
E. Laitinen, A. V. Lapin, J. Pieskä
Lobachevskii J. Math., 8 (2001),  167–184
20. The problem of filtration through a porous barrier on a permeable foundation with a layer of salt water
A. V. Lapin, E. G. Sheshukov
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 10,  9–18
21. Solution of the problem of filtration in a dam by the shape optimization method of optimizing: grid approximation
O. G. Abushov, A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9,  3–13
22. Solution of the problem of saturated-unsaturated filtration of a fluid in soil with caking of the saturation front
E. A. Kosterina, A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 6,  42–50
23. Solution of the dam problem by the method of the optimal control of a region
O. G. Abushov, A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 4,  12–21
24. Solution by grid methods of the problem of the filtration of a fluid in a dam with a nonlinear filtration law
K. P. Kurtseva, A. V. Lapin, E. G. Sheshukov
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 2,  47–52
25. Methods of upper relaxation type for the sum of a quadratic and a convex functional
A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 8,  30–39
26. Investigation of two-layer difference schemes for parabolic variational inequalities
A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 10,  37–45
27. Investigation of convergence in difference norms of schemes of the finite element method with numerical integration for fourth-order elliptic equations
R. Z. Dautov, A. V. Lapin
Differ. Uravn., 17:7 (1981),  1256–1269
28. Approximation of nonlinear stationary variational inequalities
A. V. Lapin
Issled. Prikl. Mat., 9 (1981),  9–23
29. Investigation of a nonstationary nonlinear variational inequality
A. V. Lapin
Differ. Uravn., 16:7 (1980),  1245–1254
30. Difference schemes for quasilinear elliptic equations
R. Z. Dautov, A. V. Lapin, A. D. Lyashko
Zh. Vychisl. Mat. Mat. Fiz., 20:2 (1980),  334–349
31. Difference schemes of an arbitrary order of accuracy for quasilinear elliptic equations
R. Z. Dautov, A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1979, no. 10,  24–37
32. Diffusion approximation in closed queueing systems
E. A. Begovatov, A. V. Lapin
Issled. Prikl. Mat., 7 (1979),  95–102
33. Local correctness of a class of nonlinear operator-difference schemes
A. V. Lapin
Issled. Prikl. Mat., 6 (1979),  32–45
34. Investigation of a difference scheme for a nonlinear stationary problem of filtration theory
M. M. Karchevskii, A. V. Lapin
Issled. Prikl. Mat., 6 (1979),  23–31
35. Investigation of some non-linear problems of filtering theory
A. V. Lapin
Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  689–700
36. The study of difference schemes for quasilinear degenerate elliptic equations
A. V. Lapin, Yu. B. Smirnov
Differ. Uravn., 12:5 (1976),  892–901
37. The convergence of difference schemes for quasilinear equations that are parabolic on the solution
A. V. Lapin, A. D. Lyashko
Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 12,  30–42
38. The correctness and convergence in the strong norm of difference schemes for quasilinear parabolic equations. II
A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 8,  47–53
39. The correctness and convergence in the strong norm of difference schemes for quasilinear parabolic equations. I
A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 7,  42–52
40. A study of the convergence of difference schemes in the norm $W^{(2)}_2$ for quasilinear elliptic equations
A. V. Lapin
Zh. Vychisl. Mat. Mat. Fiz., 14:6 (1974),  1516–1525
41. An investigation of difference schemes for a certain class of quasilinear parabolic equations
A. V. Lapin, A. D. Lyashko
Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 1,  71–77
42. Convergence of difference schemes for boundary problems in an arbitrary domain
A. V. Lapin
Issled. Prikl. Mat., 1 (1973),  90–93
43. Correctness of a nonlinear two-layer difference scheme with weights
A. V. Lapin
Issled. Prikl. Mat., 1 (1973),  82–89
44. Correctness in the strong norm of a nonlinear two-layer difference scheme
A. V. Lapin
Issled. Prikl. Mat., 1 (1973),  71–81
45. The correctness of a nonlinear two-layer difference scheme
A. V. Lapin
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 9,  48–53
46. Efficient difference schemes for quasilinear parabolic equations
M. M. Karchevskii, A. V. Lapin, A. D. Lyashko
Izv. Vyssh. Uchebn. Zaved. Mat., 1972, no. 3,  23–31
47. An investigation of the method of nets for nonlinear elliptic equations of arbitrary order
A. V. Lapin, A. D. Lyashko
Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 10,  37–43

48. Karchevskii Mikhail Mironovich (on the occasion of the 70th birthday)
I. B. Badriev, A. V. Lapin, E. M. Fedotov
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:4 (2014),  149–156

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017