RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Shalashilin, V I

Statistics Math-Net.Ru
Total publications: 15
Scientific articles: 15

Number of views:
This page:327
Abstract pages:3066
Full texts:1315
References:354
Professor
Doctor of physico-mathematical sciences

http://www.mathnet.ru/eng/person33490
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/201631

Publications in Math-Net.Ru
2008
1. M. S. Agapov, E. B. Kuznetsov, V. I. Shalashilin, “Numerical modeling of strong nonlinear deformation problems in Euler coordinates”, Matem. Mod., 20:3 (2008),  17–28  mathnet  zmath; Math. Models Comput. Simul., 1:2 (2009), 263–273  scopus
2. S. D. Krasnikov, E. B. Kuznetsov, V. I. Shalashilin, “Численное моделирование сверхпроводящей пластины в магнитном поле”, Trudy SVMO, 10:1 (2008),  66–71  mathnet
2007
3. M. S. Agapov, E. B. Kuznetsov, V. I. Shalashilin, “Numerical solution of strong nonlinear deformation problems in Euler's coordinates”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 149:4 (2007),  45–57  mathnet
2005
4. A. N. Danilin, E. B. Kuznetsov, V. I. Shalashilin, “On the application of implicit algorithms of the method of the continuation of the solution in the numerical integration of dynamical systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, 8,  14–26  mathnet  mathscinet; Russian Math. (Iz. VUZ), 49:8 (2005), 12–24
2003
5. D. B. Volkov-Bogorodskii, A. N. Danilin, E. B. Kuznetsov, V. I. Shalashilin, “Implicit methods for integration of initial value problems for parameterized systems of second-order ordinary differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 43:11 (2003),  1684–1696  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:11 (2003), 1620–1631
2000
6. E. B. Kuznetsov, V. I. Shalashilin, “The best many-dimensional parametrization”, Differ. Uravn., 36:6 (2000),  841–843  mathnet  mathscinet; Differ. Equ., 36:6 (2000), 934–937
1999
7. E. B. Kuznetsov, V. I. Shalashilin, “Solution of differential-algebraic equations by the method of continuation with respect to the best parameter”, Differ. Uravn., 35:3 (1999),  379–387  mathnet  mathscinet; Differ. Equ., 35:3 (1999), 382–390
8. A. N. Danilin, N. N. Zuev, E. B. Kuznetsov, V. I. Shalashilin, “Some numerical efficiency estimates for the transformation of the Cauchy problem for differential equations to the best argument”, Zh. Vychisl. Mat. Mat. Fiz., 39:7 (1999),  1134–1141  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:7 (1999), 1092–1099
1998
9. E. B. Kuznetsov, V. I. Shalashilin, “Solution of singular equations transformed to the best argument”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, 11,  56–63  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 42:11 (1998), 53–60
1997
10. E. B. Kuznetsov, V. I. Shalashilin, “Solution of differential-algebraic equations with the choice of the best argument”, Zh. Vychisl. Mat. Mat. Fiz., 37:6 (1997),  711–722  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 37:6 (1997), 691–702
1994
11. V. I. Shalashilin, E. B. Kuznetsov, “Best parameter of the continuation of the solution”, Dokl. Akad. Nauk, 334:5 (1994),  566–568  mathnet  mathscinet  zmath; Dokl. Math., 49:1 (1994), 170–173
12. E. B. Kuznetsov, V. I. Shalashilin, “The Cauchy problem as a problem of continuation with respect to the best parameter”, Differ. Uravn., 30:6 (1994),  964–971  mathnet  mathscinet; Differ. Equ., 30:6 (1994), 893–898
13. E. B. Kuznetsov, V. I. Shalashilin, “A parametric approximation”, Zh. Vychisl. Mat. Mat. Fiz., 34:12 (1994),  1757–1769  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:12 (1994), 1511–1520  isi
1993
14. V. I. Shalashilin, E. B. Kuznetsov, “The Cauchy problem for non-linearly deformed systems as a problem of the continuation of the solution with respect to the parameter”, Dokl. Akad. Nauk, 329:4 (1993),  426–428  mathnet  mathscinet  zmath; Dokl. Math., 38:4 (1993), 171–172
15. E. B. Kuznetsov, V. I. Shalashilin, “The Cauchy problem as a problem of the continuation of a solution with respect to a parameter”, Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993),  1792–1805  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 33:12 (1993), 1569–1579  isi
1984
16. È. I. Grigolyuk, V. I. Shalashilin, “Метод продолжения по параметру в задачах нелинейного деформирования стержней, пластин и оболочек”, Issled. Teor. Plastin i Obolochek, 17:1 (1984),  3–58  mathnet  mathscinet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021