RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Fuchs, Martin

Statistics Math-Net.Ru
Total publications: 18
Scientific articles: 18

Number of views:
This page:960
Abstract pages:3444
Full texts:811
References:264
E-mail:

http://www.mathnet.ru/eng/person33545
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/210369

Publications in Math-Net.Ru
2020
1. M. Bildhauer, M. Cárdenas, M. Fuchs, J. Weickert, “Existence theory for the EED inpainting problem”, Algebra i Analiz, 32:3 (2020),  127–148  mathnet
2017
2. M. Fuchs, J. Müller, C. Tietz, “Signal recovery via TV-type energies”, Algebra i Analiz, 29:4 (2017),  159–195  mathnet  mathscinet  elib; St. Petersburg Math. J., 29:4 (2018), 657–681  isi  scopus
2016
3. M. Bildhauer, M. Fuchs, J. Weickert, “An alternative approach towards the higher order denoising of images. Analytical aspects”, Zap. Nauchn. Sem. POMI, 444 (2016),  47–88  mathnet  mathscinet; J. Math. Sci. (N. Y.), 224:3 (2017), 414–441  scopus
2015
4. M. Bildhauer, M. Fuchs, C. Tietz, “$C^{1,\alpha}$-interior regularity for minimizers of a class of variational problems with linear growth related to image inpainting”, Algebra i Analiz, 27:3 (2015),  51–65  mathnet  mathscinet  elib; St. Petersburg Math. J., 27:3 (2016), 381–392  isi  scopus
2011
5. M. Fuchs, G. Zhang, “On entire solutions of the equations for the displacement fields in the deformation theory of plasticity with logarithmic hardening”, Zap. Nauchn. Sem. POMI, 397 (2011),  157–171  mathnet  mathscinet; J. Math. Sci. (N. Y.), 185:5 (2012), 746–753  scopus
2010
6. M. Fuchs, S. Repin, “Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient”, Zap. Nauchn. Sem. POMI, 385 (2010),  224–233  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 367–372  scopus
7. M. Bildhauer, M. Fuchs, “A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation”, Zap. Nauchn. Sem. POMI, 385 (2010),  5–17  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 235–242  scopus
2009
8. M. Fuchs, “Regularity results for local minimizers of energies with general densities having superquadratic growth”, Algebra i Analiz, 21:5 (2009),  203–221  mathnet  mathscinet  zmath; St. Petersburg Math. J., 21:5 (2010), 825–838  isi  scopus
2007
9. M. Fuchs, G. A. Seregin, “Existence of global solutions for a parabolic system related to the nonlinear Stokes problem”, Zap. Nauchn. Sem. POMI, 348 (2007),  254–271  mathnet; J. Math. Sci. (N. Y.), 152:5 (2008), 769–779  scopus
10. M. Bildhauer, M. Fuchs, “Error estimates for obstacle problems Of higher order”, Zap. Nauchn. Sem. POMI, 348 (2007),  5–18  mathnet; J. Math. Sci. (N. Y.), 152:5 (2008), 617–624  scopus
2006
11. M. Bildhauer, M. Fuchs, X. Zhong, “Variational integrals with a wide range of anisotropy”, Algebra i Analiz, 18:5 (2006),  46–71  mathnet  mathscinet  zmath; St. Petersburg Math. J., 18:5 (2007), 717–736
12. M. Bildhauer, M. Fuchs, X. Zhong, “On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids”, Algebra i Analiz, 18:2 (2006),  1–23  mathnet  mathscinet  zmath; St. Petersburg Math. J., 18:2 (2007), 183–199
2002
13. M. Bildhauer, M. Fuchs, “Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions”, Algebra i Analiz, 14:1 (2002),  26–45  mathnet  mathscinet  zmath; St. Petersburg Math. J., 14:1 (2003), 19–33
14. M. Bildhauer, M. Fuchs, “Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions”, Zap. Nauchn. Sem. POMI, 288 (2002),  79–99  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 123:6 (2004), 4565–4576
1999
15. M. Fuchs, M. Bildhauer, “Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth”, Zap. Nauchn. Sem. POMI, 259 (1999),  46–66  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 109:5 (2002), 1835–1850
1996
16. M. Fuchs, “Variational models for quasi-static non-Newtonian fluids”, Zap. Nauchn. Sem. POMI, 233 (1996),  55–62  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 93:5 (1999), 655–660
1995
17. M. Fuchs, “Existence of solutions of nonlinear degenerate systems of parabolic variational inequalities”, Zap. Nauchn. Sem. POMI, 221 (1995),  243–252  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 87:2 (1997), 3434–3440
1994
18. M. Fuchs, G. A. Seregin, “Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity”, Algebra i Analiz, 6:6 (1994),  128–153  mathnet  mathscinet  zmath; St. Petersburg Math. J., 6:6 (1995), 1229–1248

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020