RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Shevtsova Irina Gennad'evna

Statistics Math-Net.Ru
Total publications: 19
Scientific articles: 18
Cited articles: 16
Citations in Math-Net.Ru: 125
Presentations: 5

Number of views:
This page:1690
Abstract pages:6203
Full texts:609
References:606
Shevtsova Irina Gennad'evna
Doctor of physico-mathematical sciences (2013)
Speciality: 01.01.05 (Probability theory and mathematical statistics)
Birth date: 18.02.1983
E-mail:
Website: http://cs.msu.ru
Keywords: central limit theorem, sum of independent random variables, normal approximation, Poisson random sum, convergence rate estimate, asymprorically exact constant, risk process, smoothing, Fourier--Stiltjes transform.

Subject:

Convergence rate estimates in the central limit theorem for sums of independent random variables, analytical methods of probability

   
Main publications:
  1. I. Shevtsova, “On the accuracy of the approximation of the complex exponent by the first terms of its Taylor expansion with applications”, Journal of Mathematical Analysis and Applications, 418 (2014), 185–210  crossref
  2. I. G. Shevtsova, “O tochnosti normalnoi approksimatsii dlya obobschennykh puassonovskikh raspredelenii”, TVP, 58:1 (2013), 152–176  mathnet  crossref
  3. Irina Shevtsova, “Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation”, Annales Mathematicae et Informaticae, 39 (2012), 241–307  mathscinet
  4. I. G. Shevtsova, “Momentnye otsenki tochnosti normalnoi approksimatsii s utochnennoi strukturoi dlya summ nezavisimykh simmetrichnykh sluchainykh velichin”, TVP, 57:3 (2012), 499–532  mathnet  crossref; Theory Probab. Appl., 57:3 (2013), 468–496  crossref  isi
  5. I. G. Shevtsova, “Ob asimptoticheski pravilnykh postoyannykh v neravenstve Berri–Esseena–Katsa”, TVP, 55:2 (2010), 271–304  mathnet  crossref; Theory Probab. Appl., 55:2 (2011), 225–252  crossref  isi
  6. V. Korolev, I. Shevtsova, “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scandinavian Actuarial Journal, 2012:2 (2012), 81–105  crossref

http://www.mathnet.ru/eng/person34005
http://scholar.google.com/citations?user=PftdUjAAAAAJ&hl=en
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=783846

Publications in Math-Net.Ru
1. A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums
I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 62:2 (2017),  345–364
2. On the absolute constants in the Berry–Esseen inequality and its structural and nonuniform improvements
I. G. Shevtsova
Inform. Primen., 7:1 (2013),  124–125
3. On the accuracy of the normal approximation to compound Poisson distributions
I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 58:1 (2013),  152–176
4. Moment estimates for the exactness of normal approximation with specified structure for sums of independent symmetrical random variables
I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 57:3 (2012),  499–532
5. Nonuniform estimates of convergence rate in the central limit theorem
Yu. S. Nefedova, I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 57:1 (2012),  62–97
6. On the Berry–Esseen type inequalities for poisson random sums
V. Yu. Korolev, I. G. Shevtsova, S. Ya. Shorgin
Inform. Primen., 5:3 (2011),  64–66
7. On the accuracy of the normal approximation to distributions of Poisson random sums
Yu. S. Nefedova, I. G. Shevtsova
Inform. Primen., 5:1 (2011),  39–45
8. An improvement of the Katz–Berry–Esseen inequality
M. E. Grigor'eva, I. G. Shevtsova
Inform. Primen., 4:2 (2010),  75–82
9. Об асимптотически правильных постоянных в неравенстве Берри–Эссеена
I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 55:3 (2010),  619–621
10. A new moment estimate of the convergence rate in the Lyapunov theorem
V. Yu. Korolev, I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 55:3 (2010),  577–582
11. On the asymptotically exact constants in the Berry–Esseen–Katz inequality
I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 55:2 (2010),  271–304
12. Asymptotic estimates of the absolute constant in the Berry–Esseen inequality for distribution with unbounded third moment
M. O. Gaponova, I. G. Shevtsova
Inform. Primen., 3:4 (2009),  41–56
13. Some estimates for characteristic functions with an application to sharpening the Mises inequality
I. G. Shevtsova
Inform. Primen., 3:3 (2009),  69–78
14. An upper estimate for the absolute constant in the Berry–Esseen inequality
V. Yu. Korolev, I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 54:4 (2009),  671–695
15. Some non-uniform estimates of convergence rate in the central limit theorem for sums of independent random variables with bounded densities
I. G. Shevtsova
Sistemy i Sredstva Inform., 2006, no. special issue,  286–308
16. Sharpening of the upper-estimate of the absolute constant in the Berry–Esseen inequality
I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 51:3 (2006),  622–626
17. On the accuracy of the normal approximation. II
V. Yu. Korolev, I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 50:3 (2005),  555–564
18. On the accuracy of the normal approximation. I
V. Yu. Korolev, I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 50:2 (2005),  353–366

19. Errata to the paper in TVP, v. 55, no. 2, p. 271–304
I. G. Shevtsova
Teor. Veroyatnost. i Primenen., 56:1 (2011),  205–206

Presentations in Math-Net.Ru
1. Some Recent Results in the Field of Accuracy of the Normal Approximation to Sums of Independent Random Variables
International Scientific Conference "Probability Theory and its Applications" On Occasion of 85th Birthday of Yu. V. Prokhorov
February 14, 2015 15:30   
2. Моментные оценки точности нормальной аппроксимации с оптимальной структурой для сумм независимых случайных величин.
Seminar on Probability Theory and Mathematical Statistics
November 16, 2012 18:00
3. Exact and asymptotically exact constants in the Berry - Esseen inequality, its refinements and generalizations. Part II
Principle Seminar of the Department of Probability Theory, Moscow State University
November 18, 2009 16:45
4. Exact and asymptotically exact constants in the Berry - Esseen inequality, its refinements and generalizations. Part I
Principle Seminar of the Department of Probability Theory, Moscow State University
October 21, 2009 16:45
5. О точности нормальной аппроксимации для распределений сумм независимых случайных величин
Principle Seminar of the Department of Probability Theory, Moscow State University
December 7, 2005

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017