RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Nikitin, Andrey Gennadievich

Statistics Math-Net.Ru
Total publications: 16
Scientific articles: 16

Number of views:
This page:460
Abstract pages:2172
Full texts:962
References:194
Associate professor
Doctor of physico-mathematical sciences (2009)
Speciality: 01.01.03 (Mathematical physics)
Birth date: 20.02.1958
E-mail: ,
Keywords: singular perturbations, asymptotic solutions, boundary and internal layers.
UDC: 519.642.2, 519.624.2

Subject:

Singularly perturbed differential equations.

   
Main publications:
  • Nefedov N. N. and Nikitin A. G., Elaboration of the Asymptotic Method of Differential Inequalities for Step-Like Solutions to Singularly Perturbed Integro-Differential Equations, Zh. Vychisl. Mat. Mat. Fiz., 2001. vol. 41. no. 7. pp. 1057–1066.
  • Nefedov N. N. and Nikitin A. G., The Asymptotic Method of Differential Inequalities for Singularly Perturbed Integro-Differential Equations, Differ. Uravn., 2000. vol. 36. no. 10. pp. 1398–404.

http://www.mathnet.ru/eng/person34756
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/363705
Full list of publications: Download file (25 kB)

Publications in Math-Net.Ru
2012
1. N. N. Nefedov, A. G. Nikitin, “The initial boundary value problem for a nonlocal singularly perturbed reaction–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012),  1042–1047  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:6 (2012), 926–931  isi  elib  scopus
2011
2. N. N. Nefedov, A. G. Nikitin, “Boundary and internal layers in the reaction-diffusion problem with a nonlocal inhibitor”, Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1081–1090  mathnet  mathscinet; Comput. Math. Math. Phys., 51:6 (2011), 1011–1019  isi  scopus
2007
3. N. N. Nefedov, A. G. Nikitin, “The Cauchy problem for a singularly perturbed integro-differential Fredholm equation”, Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  655–664  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 47:4 (2007), 629–637  scopus
2006
4. N. N. Nefedov, A. G. Nikitin, “Method of differential inequalities for step-like contrast structures in singularly perturbed integro-differential equations in the spatially two-dimensional case”, Differ. Uravn., 42:5 (2006),  690–700  mathnet  mathscinet; Differ. Equ., 42:5 (2006), 739–749
5. N. N. Nefedov, A. G. Nikitin, T. A. Urazgil'dina, “The Cauchy problem for a singularly perturbed Volterra integro-differential equation”, Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  805–812  mathnet  mathscinet; Comput. Math. Math. Phys., 46:5 (2006), 768–775  scopus
2001
6. N. N. Nefedov, A. G. Nikitin, “Asymptotic stability of contrasting structures of step-like data type in singularly perturbed integro-differential equations in two-dimensional case”, Matem. Mod., 13:12 (2001),  65–74  mathnet  mathscinet  zmath
7. N. N. Nefëdov, A. G. Nikitin, “Development of the asymptotic method of differential inequalities for step-type solutions of singularly perturbed integro-differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 41:7 (2001),  1057–1066  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 41:7 (2001), 1005–1014
2000
8. N. N. Nefedov, A. G. Nikitin, “The asymptotic method of differential inequalities for singularly perturbed integro-differential equations”, Differ. Uravn., 36:10 (2000),  1398–1404  mathnet  mathscinet; Differ. Equ., 36:10 (2000), 1544–1550
1999
9. A. G. Nikitin, A. P. Petrov, “Passage to the limit with respect to a small parameter for the eigenvalues of a singularly perturbed Sturm–Liouville problem”, Differ. Uravn., 35:6 (1999),  843–845  mathnet  mathscinet; Differ. Equ., 35:6 (1999), 850–853
10. A. G. Nikitin, “On the principal eigenfunction of a singularly perturbed Sturm–Liouville problem”, Zh. Vychisl. Mat. Mat. Fiz., 39:4 (1999),  588–591  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:4 (1999), 560–563
1996
11. A. B. Vasil'eva, A. G. Nikitin, “On the stability of periodic contrast structures in the spatially two-dimensional case”, Differ. Uravn., 32:10 (1996),  1355–1361  mathnet  mathscinet; Differ. Equ., 32:10 (1996), 1351–1357
1995
12. A. B. Vasil'eva, A. G. Nikitin, A. P. Petrov, “The asymptotic method of investigation of contrast structures and it application to the theory of hydromagnetic dynamo”, Matem. Mod., 7:2 (1995),  61–71  mathnet  mathscinet  zmath
1991
13. A. A. Kudryavtsev, A. G. Nikitin, “Recombination kinetics of atomic ions in dense low-temperature nonisothermal plasmas”, TVT, 29:4 (1991),  625–632  mathnet; High Temperature, 29:4 (1991), 483–488  isi  scopus
1990
14. V. F. Butuzov, A. G. Nikitin, “A singularly perturbed system of equations of elliptic type”, Differ. Uravn., 26:2 (1990),  271–278  mathnet  mathscinet; Differ. Equ., 26:2 (1990), 207–213
1988
15. V. F. Butuzov, A. G. Nikitin, “An angular boundary layer in the asymptotics of the solution of a singularly perturbed system of equations of elliptic type”, Differ. Uravn., 24:2 (1988),  343–345  mathnet  mathscinet  zmath
1981
16. V. F. Butuzov, A. G. Nikitin, “On a system of singularly perturbed equations of elliptic type”, Differ. Uravn., 17:10 (1981),  1779–1791  mathnet  mathscinet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020