Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Elkin, Vladimir Ivanovich

Statistics Math-Net.Ru
Total publications: 28
Scientific articles: 28
Presentations: 2

Number of views:
This page:916
Abstract pages:2598
Full texts:1121
References:189
Professor
Doctor of physico-mathematical sciences (1992)

http://www.mathnet.ru/eng/person37014
https://ru.wikipedia.org/wiki/
List of publications on Google Scholar
List of publications on ZentralBlatt
https://elibrary.ru/author_items.asp?authorid=1895
ISTINA http://istina.msu.ru/workers/elkinvi

Publications in Math-Net.Ru
2018
1. V. I. Elkin, “Affine controlled systems and $t$-systems of Pfaffian equations”, Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018),  1098–1107  mathnet  elib; Comput. Math. Math. Phys., 58:7 (2018), 1049–1057  isi  scopus
2. V. I. Elkin, “Geometric theory of reduction of nonlinear control systems”, Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  165–168  mathnet  elib; Comput. Math. Math. Phys., 58:2 (2018), 155–158  isi  scopus
2016
3. V. I. Elkin, “Systems of Pfaffian equations and controlled systems”, Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016),  1863–1871  mathnet  elib; Comput. Math. Math. Phys., 56:11 (2016), 1834–1842  isi  scopus
2011
4. V. I. Elkin, “Controllable dynamic systems and underdetermined systems of differential equations”, Avtomat. i Telemekh., 2011, 9,  28–38  mathnet  mathscinet  zmath; Autom. Remote Control, 72:9 (2011), 1822–1832  isi  scopus
2010
5. V. I. Elkin, “Constructing subsystems for nonlinear controlled systems”, Avtomat. i Telemekh., 2010, 5,  11–20  mathnet  mathscinet  zmath; Autom. Remote Control, 71:5 (2010), 738–746  isi  scopus
2006
6. V. I. Elkin, “On categories and foundations of the theory of nonlinear control dynamical systems: V”, Differ. Uravn., 42:11 (2006),  1481–1489  mathnet  mathscinet; Differ. Equ., 42:11 (2006), 1553–1561
2005
7. V. I. Elkin, “On Categories and Foundations of the Theory of Nonlinear Control Dynamical Systems: IV”, Differ. Uravn., 41:11 (2005),  1501–1509  mathnet  mathscinet; Differ. Equ., 41:11 (2005), 1577–1584
2004
8. V. I. Elkin, “On categories and foundations of the theory of nonlinear control dynamical systems: III”, Differ. Uravn., 40:12 (2004),  1596–1607  mathnet  mathscinet; Differ. Equ., 40:12 (2004), 1676–1686
2003
9. V. I. Elkin, “Categories and Foundations of the Theory of Nonlinear Controlled Dynamical Systems: II”, Differ. Uravn., 39:11 (2003),  1487–1496  mathnet  mathscinet; Differ. Equ., 39:11 (2003), 1568–1577
2002
10. V. I. Elkin, “Categories and Foundations of the Theory of Nonlinear Controlled Dynamical Systems: I”, Differ. Uravn., 38:11 (2002),  1467–1482  mathnet  mathscinet; Differ. Equ., 38:11 (2002), 1559–1573
2000
11. V. I. Elkin, L. B. Konovalova, “On the reduction of nonlinear controlled systems to linear ones”, Avtomat. i Telemekh., 2000, 2,  45–55  mathnet  mathscinet  zmath; Autom. Remote Control, 61:2 (2000), 215–225
1999
12. V. I. Elkin, D. G. Ivashko, “On the decomposition of three-dimensional nonlinear control systems”, Differ. Uravn., 35:11 (1999),  1473–1481  mathnet  mathscinet; Differ. Equ., 35:11 (1999), 1494–1502
1998
13. V. I. Elkin, D. G. Ivashko, “On a connection between the concepts of a $C$-system and an $L_1$-system in the theory of affine control systems”, Differ. Uravn., 34:11 (1998),  1471–1477  mathnet  mathscinet; Differ. Equ., 34:11 (1998), 1471–1477
1997
14. V. I. Elkin, “On control systems that admit Lie algebras with the $L$-property”, Differ. Uravn., 33:11 (1997),  1490–1494  mathnet  mathscinet; Differ. Equ., 33:11 (1997), 1496–1500
1996
15. V. I. Elkin, D. G. Ivashko, “Admissible Lie algebras for some types of affine control systems”, Differ. Uravn., 32:11 (1996),  1473–1479  mathnet  mathscinet; Differ. Equ., 32:11 (1996), 1469–1476
1995
16. V. I. Elkin, “Subsystems of controllable systems and the problem of terminal control”, Avtomat. i Telemekh., 1995, 1,  21–29  mathnet  mathscinet  zmath; Autom. Remote Control, 56:1 (1995), 16–22
17. V. I. Elkin, “Decomposition of affine controlled systems”, Differ. Uravn., 31:11 (1995),  1819–1828  mathnet  mathscinet; Differ. Equ., 31:11 (1995), 1787–1795
1994
18. V. I. Elkin, “Narrowing of affine control systems and its applications”, Dokl. Akad. Nauk, 339:6 (1994),  754–756  mathnet  mathscinet  zmath; Dokl. Math., 39:12 (1994), 853–855
19. V. I. Elkin, “Affine control systems, affine distributions and $t$-codistributions”, Differ. Uravn., 30:11 (1994),  1869–1879  mathnet  mathscinet; Differ. Equ., 30:11 (1994), 1726–1734
20. V. I. Elkin, “Subsystems of control systems and control problems with equality-type constraints on the phase variables”, Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994),  1585–1596  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:11 (1994), 1363–1370  isi
1993
21. V. I. Elkin, “Factorization and decomposition of affine controlled systems”, Dokl. Akad. Nauk, 332:5 (1993),  560–562  mathnet  mathscinet  zmath; Dokl. Math., 48:2 (1994), 376–379
1991
22. V. I. Elkin, “Automorphisms and decomposition of affine control systems”, Dokl. Akad. Nauk SSSR, 316:1 (1991),  30–32  mathnet  mathscinet  zmath; Dokl. Math., 43:1 (1991), 23–25
1988
23. V. I. Elkin, “Classification of affine controllable systems with a phase space of dimension $n<4$”, Dokl. Akad. Nauk SSSR, 302:1 (1988),  18–20  mathnet  mathscinet  zmath; Dokl. Math., 38:2 (1989), 245–247
1985
24. V. I. Ëlkin, “On the classification and canonical forms of nonlinear controllable systems”, Avtomat. i Telemekh., 1985, 9,  31–41  mathnet  mathscinet  zmath; Autom. Remote Control, 46 (1985), 1089–1098
25. V. I. Elkin, “General solution of systems of partial differential equations with identical principal part”, Differ. Uravn., 21:8 (1985),  1389–1398  mathnet  mathscinet
1981
26. V. I. Elkin, “Implementation, invariance, and autonomy of nonlinear dynamic controlled systems”, Avtomat. i Telemekh., 1981, 7,  36–44  mathnet  mathscinet  zmath; Autom. Remote Control, 42:7 (1981), 878–885
1979
27. V. I. Elkin, Yu. N. Pavlovsky, T. G. Smirnova, “The method of complete systems in aggregation problems”, Upravliaemie systemy, 1979, 18,  26–38  mathnet  mathscinet  zmath
1978
28. V. I. Elkin, “Conditions for the aggregation of dynamical control objects”, Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  928–934  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 18:4 (1978), 107–114

Presentations in Math-Net.Ru
1. Геометрическая теория редукции нелинейных управляемых систем
V. I. Elkin
Scientific conference "Modeling the Co-evolution of Nature and Society: problems and experience" devoted to the 100-th anniversary of N. N. Moiseev
November 8, 2017 10:00   
2. Редукция управляемых систем
V. I. Elkin
International Conference on Applied Mathematics and Computer Science dedicated to the 60th Anniversary of Dorodnicyn Computing Centre of RAS
December 9, 2015 16:15   

Organisations
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022