RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Sakhaev, Sh

Statistics Math-Net.Ru
Total publications: 7
Scientific articles: 7

Number of views:
This page:188
Abstract pages:941
Full texts:379
References:72

http://www.mathnet.ru/eng/person37357
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/234330

Publications in Math-Net.Ru
2014
1. Sh. Sahaev, V. A. Solonnikov, “On the proof of the solvability of a linear problem arising in magnetohydrodynamics with the method of integral equations”, Algebra i Analiz, 26:6 (2014),  172–197  mathnet  mathscinet  elib; St. Petersburg Math. J., 26:6 (2015), 985–1003  isi  elib  scopus
2011
2. Sh. Sakhaev, V. A. Solonnikov, “On some stationary problems of magnetohydrodynamics in multi-connected domains”, Zap. Nauchn. Sem. POMI, 397 (2011),  126–149  mathnet  mathscinet; J. Math. Sci. (N. Y.), 185:5 (2012), 728–741  scopus
2001
3. Sh. Sakhaev, “On one analog of Green's formula and its applications in electrodynamics”, Zap. Nauchn. Sem. POMI, 275 (2001),  212–232  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 117:2 (2003), 4008–4019
2000
4. Sh. Sakhaev, “On boundary value problems for a version of Maxwell equations”, Zap. Nauchn. Sem. POMI, 264 (2000),  311–320  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 111:5 (2002), 3806–3811
1975
5. Sh. Sakhaev, V. A. Solonnikov, “Estimations of the solutions of a certain boundary value problem of magnetohydrodynamics”, Trudy Mat. Inst. Steklov., 127 (1975),  76–92  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 127 (1975), 87–108
6. Sh. Sakhaev, “Estimation of the solution of a certain overdetermined parabolic initial-boundary value problem”, Trudy Mat. Inst. Steklov., 127 (1975),  58–75  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 127 (1975), 67–86
1973
7. Sh. Sakhaev, “Solvability of a nonlinear nonstationary boundary-value problem of magnetohydrodynamics in the spaces $W^{2,}_{px,} \vphantom{W}^1_t(Q_T)$, $p>1$, and $C^{2+\alpha,\vphantom{\alpha/2}}_{x} \vphantom{C}^{1+\alpha/2}_t(Q_T)$”, Dokl. Akad. Nauk SSSR, 213:4 (1973),  815–818  mathnet  mathscinet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020