RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Mitrokhin, Sergei Ivanovich

Statistics Math-Net.Ru
Total publications: 26
Scientific articles: 26

Number of views:
This page:982
Abstract pages:2607
Full texts:855
References:368
Associate professor
Candidate of physico-mathematical sciences (1985)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
E-mail:

http://www.mathnet.ru/eng/person46310
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:mitrokhin.sergey-ivanovich
https://mathscinet.ams.org/mathscinet/MRAuthorID/233894
ISTINA http://istina.msu.ru/workers/1288936
http://www.scopus.com/authid/detail.url?authorId=7004215463

Publications in Math-Net.Ru
2020
1. S. I. Mitrokhin, “On the asymptotic behavior of the spectrum of a sixth-order differential operator, whose potential is the delta function”, Zhurnal SVMO, 22:3 (2020),  280–305  mathnet
2. S. I. Mitrokhin, “Asymptotics of the spectrum of even-order differential operators with discontinuos weight functions”, Zhurnal SVMO, 22:1 (2020),  48–70  mathnet
2019
3. S. I. Mitrokhin, “Asymptotics of the spectrum of a periodic boundary value problem for a differential operator with a summable potential”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019),  136–149  mathnet  elib
4. S. I. Mitrokhin, “On the study of the spectrum of a functional-differential operator with a summable potential”, Vladikavkaz. Mat. Zh., 21:2 (2019),  38–57  mathnet
2018
5. S. I. Mitrokhin, “Asymptotic of eigenvalues of differential operator with alternating weight function”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, 6,  31–47  mathnet; Russian Math. (Iz. VUZ), 62:6 (2018), 27–42  isi  scopus
6. S. I. Mitrokhin, “Asymptotics of eigenvalues of fourth order differential operator with alternating weight function”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, 6,  46–58  mathnet  mathscinet  zmath; Moscow University Mathematics Bulletin, 73:6 (2018), 254–265  isi  scopus
7. S. I. Mitrokhin, “Asymptotics of the spectrum of family functional-differential operators with summable potential”, Sib. J. Pure and Appl. Math., 18:4 (2018),  56–80  mathnet
8. S. I. Mitrokhin, “On the study of spectral properties of differential operators of even order with discontinuous weight function”, Tambov University Reports. Series: Natural and Technical Sciences, 23:121 (2018),  74–99  mathnet
9. S. I. Mitrokhin, “About the spectral properties of the family of the differential operator of even order with summable potential”, Mathematical Physics and Computer Simulation, 21:2 (2018),  13–26  mathnet
2017
10. S. I. Mitrokhin, “Multipoint differential operators: “splitting” of the multiple in main eigenvalues”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 17:1 (2017),  5–18  mathnet  elib
11. S. I. Mitrokhin, “On the spectrum of the multipoint boundary value problem for an odd order differential operator with summable potential”, Mathematical notes of NEFU, 24:1 (2017),  26–42  mathnet  elib
12. S. I. Mitrokhin, “Study of differential operator with summable potential and discontinuous weight function”, Ufimsk. Mat. Zh., 9:4 (2017),  74–86  mathnet  elib; Ufa Math. J., 9:4 (2017), 72–84  isi  scopus
13. S. I. Mitrokhin, “A periodic boundary value problem for a fourth order differential operator with a summable potential”, Vladikavkaz. Mat. Zh., 19:4 (2017),  35–49  mathnet
14. S. I. Mitrokhin, “Spectral properties of the family of even order differential operators with a summable potential”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, 4,  3–15  mathnet  mathscinet  elib; Moscow University Mathematics Bulletin, 72:4 (2017), 137–148  isi  scopus
15. S. I. Mitrokhin, “Asymptotics of spectrum of multipoint differential operators with summable potential”, Sib. J. Pure and Appl. Math., 17:2 (2017),  69–81  mathnet; J. Math. Sci., 231:2 (2018), 243–254
16. S. I. Mitrokhin, “On the “splitting” effect for multipoint differential operators with summable potential”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017),  249–270  mathnet  zmath  elib
2016
17. S. I. Mitrokhin, “About asymptotics of the eigenvalues of model boundary problem for the family of differential operators with summable potential”, Meždunar. nauč.-issled. žurn., 2016, 10-2(52),  137–143  mathnet
18. S. I. Mitrokhin, “On a study of the spectrum of a boundary value problem for the fifth-order differential operator with integrable potential”, Mathematical notes of NEFU, 23:2 (2016),  78–89  mathnet  elib
2013
19. S. I. Mitrokhin, “Spectral properties of a Sturm–Liouville type differential operator with a retarding argument”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, 4,  38–42  mathnet  mathscinet; Moscow University Mathematics Bulletin, 68:4 (2013), 198–201  scopus
2011
20. S. I. Mitrokhin, “On spectral properties of a differential operator with summable coefficients with a retarded argument”, Ufimsk. Mat. Zh., 3:4 (2011),  95–115  mathnet  zmath
2010
21. S. I. Mitrokhin, “Spectral properties of a fourth-order differential operator with integrable coefficients”, Tr. Mat. Inst. Steklova, 270 (2010),  188–197  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 270 (2010), 184–193  isi  scopus
2009
22. S. I. Mitrokhin, “The asymptotics of the eigenvalues of a fourth order differential operator with summable coefficients”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, 3,  14–17  mathnet  mathscinet  zmath
2008
23. S. I. Mitrokhin, “О «расщеплении» кратных в главном собственных значений многоточечных краевых задач”, Matem. Mod. Kraev. Zadachi, 3 (2008),  130–133  mathnet
1997
24. S. I. Mitrokhin, “On the “splitting” in the main approximation of multiple eigenvalues of multipoint boundary value problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1997, 3,  38–43  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 41:3 (1997), 37–42
1992
25. S. I. Mitrokhin, “Spectral properties of differential operators with discontinuous coefficients”, Differ. Uravn., 28:3 (1992),  530–532  mathnet  mathscinet  zmath
1986
26. S. I. Mitrokhin, “Trace formulas for a boundary value problem with a functional-differential equation with a discontinuous coefficient”, Differ. Uravn., 22:6 (1986),  927–931  mathnet  mathscinet
27. S. I. Mitrokhin, “Regularized trace formulas for second-order differential operators with discontinuous coefficients”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, 6,  3–6  mathnet  mathscinet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020