RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Maslova Natalia V.

Statistics Math-Net.Ru
Total publications: 23
Scientific articles: 23
Presentations: 1

Number of views:
This page:2293
Abstract pages:4235
Full texts:923
References:726
Maslova Natalia V.
Candidate of physico-mathematical sciences (2011)
Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
E-mail:
Website: http://kadm.imkn.urfu.ru/pages.php?id=maslova
Keywords: Finite group, normal series, non-abelian composition factor, simple group, maximal subgroup, odd index, Hall subgroup, spectrum, Gruenberg-Kegel graph (prime graph), prime spectrum
UDC: 512.542
MSC: 20D05, 20D06, 20D20, 20D60, 20D99

Subject:

Finite Group Theory and Combinatorics

   
Main publications:
  1. Natalia V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 267:Supl.1 (2009), S164ЦS183.
  2. Natalia V. Maslova, Danila O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Siberian Advances in Mathematics, 23:3 (2013), 196Ц209
  3. Natalia V. Maslova, “On the coincidence of GrünbergЦKegel graphs of a finite simple group and its proper subgroup”, Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 288:Supl.1 (2015), S129ЦS141

http://www.mathnet.ru/eng/person48084
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.scopus.com/authid/detail.url?authorId=35386515800

Publications in Math-Net.Ru
2018
1. I. B. Gorshkov, N. V. Maslova, “Finite almost simple groups whose Gruenberg–Kegel graphs coincide with Gruenberg–Kegel graphs of solvable groups”, Algebra Logika, 57:2 (2018),  175–196  mathnet; Algebra and Logic, 57:2 (2018), 115–129  isi  scopus
2. N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups: addendum”, Sib. Èlektron. Mat. Izv., 15 (2018),  707–718  mathnet  isi
3. W. Guo, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in some extensions of finite groups”, Sibirsk. Mat. Zh., 59:4 (2018),  773–790  mathnet; Siberian Math. J., 59:4 (2018), 610–622  isi  scopus
2017
4. A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in finite simple symplectic groups”, Sibirsk. Mat. Zh., 58:3 (2017),  599–610  mathnet  elib; Siberian Math. J., 58:3 (2017), 467–475  isi  elib  scopus
2016
5. N. V. Maslova, D. Pagon, “On the realizability of a graph as the Gruenberg–Kegel graph of a finite group”, Sib. Èlektron. Mat. Izv., 13 (2016),  89–100  mathnet  isi
6. N. V. Maslova, D. O. Revin, “Nonabelian composition factors of a finite group whose maximal subgroups of odd indices are Hall subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  178–187  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 148–157  isi  scopus
7. S. V. Goryainov, G. S. Isakova, V. V. Kabanov, N. V. Maslova, L. V. Shalaginov, “On Deza graphs with disconnected second neighborhood of a vertex”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  50–61  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 97–107  isi  scopus
8. A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “A pronormality criterion for supplements to abelian normal subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  153–158  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 145–150  isi  scopus
2015
9. N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra Logika, 54:1 (2015),  95–102  mathnet  mathscinet; Algebra and Logic, 54:1 (2015), 65–69  isi  scopus
10. A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in finite simple groups”, Sibirsk. Mat. Zh., 56:6 (2015),  1375–1383  mathnet  mathscinet  elib; Siberian Math. J., 56:6 (2015), 1101–1107  isi  scopus
11. N. V. Maslova, “On the finite prime spectrum minimal groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  222–232  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 109–119
12. N. V. Maslova, “Finite simple groups that are not spectrum critical”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  172–176  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 211–215  isi  scopus
2014
13. A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat'ev, N. V. Maslova, “On realizability of a graph as the prime graph of a finite group”, Sib. Èlektron. Mat. Izv., 11 (2014),  246–257  mathnet
14. E. N. Demina, N. V. Maslova, “Nonabelian composition factors of a finite group with arithmetic constraints to nonsolvable maximal subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  122–134  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 64–76  isi  scopus
15. N. V. Maslova, “On the coincidence of Grünberg–Kegel graphs of a finite simple group and its proper subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  156–168  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 129–141  isi  scopus
2013
16. N. V. Maslova, D. O. Revin, “On nonabelian composition factors of a finite group that is prime spectrum minimal”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  155–166  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 116–127  isi  scopus
17. N. V. Maslova, D. O. Revin, “Generation of a finite group with Hall maximal subgroups by a pair of conjugate elements”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:3 (2013),  199–206  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S139–S145  isi  scopus
2012
18. N. V. Maslova, D. O. Revin, “Finite groups whose maximal subgroups have the Hall property”, Mat. Tr., 15:2 (2012),  105–126  mathnet  mathscinet  elib; Siberian Adv. Math., 23:3 (2013), 196–209
19. N. V. Maslova, “Nonabelian composition factors of a finite group whose all maximal subgroups are Hall”, Sibirsk. Mat. Zh., 53:5 (2012),  1065–1076  mathnet  mathscinet; Siberian Math. J., 53:5 (2012), 853–861  isi  scopus
2011
20. N. V. Maslova, “Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle”, Algebra Logika, 50:2 (2011),  189–208  mathnet  mathscinet  zmath; Algebra and Logic, 50:2 (2011), 133–145  isi  scopus
2010
21. N. V. Maslova, “Classification of maximal subgroups of odd index in finite groups with simple orthogonal socle”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  237–245  mathnet  elib
22. N. V. Maslova, “Classification of maximal subgroups of odd index in finite groups with alternating socle”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  182–184  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S136–S138  isi  scopus
2008
23. N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  100–118  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S164–S183  isi

Presentations in Math-Net.Ru
1. јрифметические свойства и нормальное строение конечных групп
N. V. Maslova
Research Seminar of the Department of Higher Algebra MSU
October 29, 2018 16:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019