RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Chechel' I I

Statistics Math-Net.Ru
Total publications: 22
Scientific articles: 21
Presentations: 3

Number of views:
This page:142
Abstract pages:2870
Full texts:1060
References:366

http://www.mathnet.ru/eng/person53721
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/201157

Publications in Math-Net.Ru
1. On the structure of steady axisymmetric Navier-Stokes flows with a stream function having multiple local extrema in its definite-sign domains
B. V. Pal'tsev, M. B. Solov'ev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013),  1869–1893
2. Numerical study of spherical Couette flows for certain zenith-angle-dependent rotations of boundary spheres at low Reynolds numbers
B. V. Pal'tsev, M. B. Solov'ev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012),  1095–1133
3. On the development of iterative methods with boundary condition splitting for solving boundary and initial-boundary value problems for the linearized and nonlinear Navier–Stokes equations
B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  74–95
4. Numerical study of the basic stationary spherical couette flows at low Reynolds numbers
B. V. Pal'tsev, A. V. Stavtsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  693–716
5. On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  858–886
6. Second-order accurate method with splitting of boundary conditions for solving the stationary axially symmetric Navier–Stokes problem in spherical gaps
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2232–2250
7. Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005),  846–889
8. Increasing the rate of convergence of bilinear finite-element realizations of iterative methods by splitting boundary conditions for Stokes-type systems for large values of a singular parameter
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  2049–2068
9. Exact estimates of the convergence rate of iterative methods with splitting of the boundary conditions for the Stokes-type system in a layer with a periodicity condition
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000),  1823–1837
10. Bilinear finite element implementations of iterative methods with incomplete splitting of boundary conditions for a Stokes-type system on a rectangle
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1828–1854
11. On some methods for enhancing the convergence speed for the higher harmonics of bilinear finite element implementations of iterative methods with boundary-condition splitting for a Stokes-type system
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  956–970
12. Real properties of bilinear finite element implementations of methods with the splitting of boundary conditions for a Stokes-type system
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998),  247–261
13. Algorithms based on bilinear finite elements for iterative methods with split boundary conditions for a Stokes-type system in a strip under the periodicity condition
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997),  799–815
14. A rapidly convergent iterative domain-decomposition method for boundary-value problems for a second-order elliptic equation with a parameter
N. A. Meller, B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 36:10 (1996),  26–45
15. The multigrid method applied to a finite-element scheme for a two-dimensional Stokes-type system
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 30:12 (1990),  1797–1803
16. A variational-difference method for solving boundary-value problems in the theory of shells using Vekua's moment theory
L. S. Klabukova, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  375–389
17. Numerical modeling of long surface and internal waves in a closed slowly rotating basin
V. F. Baklanovskaya, A. S. Blatov, K. V. Dauletiyarov, S. Kh. Dzhumagazieva, A. T. Kondrin, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 24:7 (1984),  1066–1078
18. Solution of boundary value problems of the theory of generalized analytic functions by the variational-difference method
L. S. Klabukova, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 24:1 (1984),  19–36
19. Boundary value problems for the St. Venant system of equations on a plane
V. F. Baklanovskaya, B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  708–725
20. A numerical method for solving St. Venant's equations (chamber model)
V. F. Baklanovskaya, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 16:5 (1976),  1217–1232
21. The difference method of solving a boundary value problem for generalized analytic functions
L. S. Klabukova, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 9:2 (1969),  271–285

22. Correction
B. V. Pal'tsev, I. I. Chechel'
Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1728

Presentations in Math-Net.Ru
1. Об особенностях циркуляции жидкости Навье–Стокса в сферических слоях
B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel'
International Conference on Applied Mathematics and Computer Science dedicated to the 60th Anniversary of Dorodnicyn Computing Centre of RAS
December 9, 2015 18:00   
2. Об особенностях циркуляции жидкости Навье–Стокса в сферических слоях при наличии у функции тока в областях ее знакопостянства многих локальных экстемумов
B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel'
Conference "Mathematical Physics. Vladimirov-90" dedicated to the 90th anniversary of academician V. S. Vladimirov
November 15, 2013 15:30   
3. Быстросходящиеся итерационные методы с расщеплением граничных условий для систем Стокса и Навье–Стокса, численное исследование сферических течений Куэтта
B. V. Pal'tsev, I. I. Chechel'
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
November 22, 2007 11:00

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019