Full list of publications: |
|
|
2021 |
1. |
Olga Balkanova, Dmitry Frolenkov, “The second moment of symmetric square $L$-functions over Gaussian integers”, Proc. R. Soc. Edinb., Sect. A, Math., 2021, 1–27 (Published online) , arXiv: 2008.13399 ; (Published online) |
2. |
Olga Balkanova, Dmitry Frolenkov, “Non-vanishing of Maass form symmetric square $L$-functions”, J. Math. Anal. Appl., 500:2 (2021), 125148 , 23 pp. ; |
3. |
Olga Balkanova, Dmitry Frolenkov, “Moments of $L$-functions and the Liouville–Green method”, J. Eur. Math. Soc. (JEMS), 23:4 (2021), 1333–1380 , arXiv: 1610.03465 ; |
|
2020 |
4. |
O. Balkanova, G. Bhowmik, D. Frolenkov, N. Raulf, “Mixed moment of $GL(2)$ and $GL(3)$ $L$-functions”, Proc. London Math. Soc. (3), 121:2 (2020), 177–219 , arXiv: 1811.03553 ; |
5. |
Dmitry Frolenkov, “The cubic moment of automorphic $L$-functions in the weight aspect”, J. Number Theory, 207:2 (2020), 247–281 ; |
6. |
D. A. Frolenkov, “Nondiagonal terms in the second moment of automorphic $L$-functions”, Sb. Math., 211:8 (2020), 1171–1189 |
7. |
Olga Balkanova, Dmitry Frolenkov, “Prime geodesic theorem for the Picard manifold”, Adv. Math., 375 (2020), 107377 , 42 pp., arXiv: 1804.00275 (cited: 1); |
|
2019 |
8. |
Olga Balkanova, Dmitry Frolenkov, “Bounds for a spectral exponential sum”, J. London Math. Soc., 99:2 (2019), 249–272 , arXiv: 1803.04201 (cited: 7) (cited: 7) |
9. |
Olga Balkanova, Dimitrios Chatzakos, Giacomo Cherubini, Dmitry Frolenkov, Niko Laaksonen, “Prime geodesic theorem in the 3-dimensional hyperbolic space”, Trans. Amer. Math. Soc., 372:8 (2019), 5355–5374 , arXiv: 1712.00880 (cited: 3) (cited: 5) |
10. |
Olga Balkanova, Gautami Bhowmik, Dmitry Frolenkov, Nicole Raulf, “A mean value result for a product of $GL(2)$ and $GL(3)$ $L$-functions”, Mathematika, 65:3 (2019), 743–762 , arXiv: 1710.01388 (cited: 1) (cited: 1) |
11. |
Olga Balkanova, Dmitry Frolenkov, “Sums of Kloosterman sums in the prime geodesic theorem”, Q. J. Math., 70:2 (2019), 649–674 , arXiv: 1803.04206 (cited: 2) (cited: 2) |
12. |
Olga Balkanova, Dmitry Frolenkov, “Convolution formula for the sums of generalized Dirichlet L-functions”, Rev. Mat Iberoam, 35:7 (2019), 1973–1995 , arXiv: 1709.01365 (cited: 1) (cited: 2) |
|
2018 |
13. |
Olga Balkanova, Dmitry Frolenkov, “Non-vanishing of automorphic $L$-functions of prime power level”, Monatsh. Math., 185:1 (2018), 17–41 , arXiv: 1605.02434 (cited: 2) (cited: 1) |
14. |
Olga Balkanova, Dmitry Frolenkov, “The mean value of symmetric square $L$-functions”, Algebra Number Theory, 12:1 (2018), 35–59 , arXiv: 1610.06331 (cited: 7) (cited: 7) |
|
2017 |
15. |
Olga Balkanova, Dmitry Frolenkov, “New error term for the fourth moment of automorphic $L$-functions”, J. Number Theory, 173 (2017), 293–303 (cited: 2) (cited: 2) |
16. |
V. A. Bykovskii, D. A. Frolenkov, “Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line”, Izv. Math., 81:2 (2017), 239–268 (cited: 4) (cited: 2) |
17. |
Olga G. Balkanova, Dmitry A. Frolenkov, “On the binary additive divisor problem”, Proc. Steklov Inst. Math., 299 (2017), 44–49 (cited: 1) (cited: 1) |
18. |
V. A. Bykovskii, D. A. Frolenkov, “The average length of finite continued fractions with fixed denominator”, Sb. Math., 208:5 (2017), 644–683 |
19. |
Olga Balkanova, Dmitry Frolenkov, “The first moment of cusp form $L$-functions in weight aspect on average”, Acta Arith., 181:3 (2017), 197–208 , arXiv: 1703.00742 (cited: 2) (cited: 1) |
|
2016 |
20. |
Olga G. Balkanova, Dmitry A. Frolenkov, “A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line”, Proc. Steklov Inst. Math., 294 (2016), 13–46 (cited: 5) (cited: 4) |
|
2015 |
21. |
V. A. Bykovskii, D. A. Frolenkov, “Some integral representations of hypergeometric function”, FEMJ, 15:1 (2015), 38–40 |
22. |
D. A. Frolenkov, “On the uniform bounds on hypergeometric function”, Dal'nevost. Mat. Zh., 15:2 (2015), 289–298 |
23. |
V. A. Bykovskii, D. A. Frolenkov, “On the second moment of L-series of holomorphic cusp forms on the critical line”, Dokl. Math., 92:1 (2015), 417–420 (cited: 2) (cited: 1) |
24. |
V. A. Bykovskii, D. A. Frolenkov, “Asymptotic formula for the convolution of a generalized divisor function”, Dokl. Math., 92:3 (2015), 670–673 (cited: 1) (cited: 1) |
|
2014 |
25. |
I. D. Kan, D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich”, Izv. Math., 78:2 (2014), 293–353 (cited: 7) (cited: 1) (cited: 1) (cited: 4) |
26. |
D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich II”, Moscow J. Combin. Number Theory, 4:1 (2014), 78–117 |
|
2013 |
27. |
D. A. Frolenkov, K. Soundararajan, “A generalization of the Pólya–Vinogradov inequality”, Ramanujan J., 31:3 (2013), 271–279 (cited: 13) (cited: 15) |
|
2012 |
28. |
D. A. Frolenkov, “The mean value of Frobenius numbers with three arguments”, Izv. Math., 76:4 (2012), 760–819 (cited: 3) (cited: 3) (cited: 3) (cited: 2) |
29. |
D. A. Frolenkov, “Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency Euclidean algorithms”, Sb. Math., 203:2 (2012), 288–305 (cited: 1) (cited: 1) (cited: 1) (cited: 1) |
|
2011 |
30. |
D. A. Frolenkov, “A numerically explicit version of the Pólya-Vinogradov inequality”, Mosc. J. Comb. Number Theory, 1:3 (2011), 25–41 |
|