RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Turukina, Ludmila Vladimirovna

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 9

Number of views:
This page:156
Abstract pages:1565
Full texts:544
References:182
Associate professor
Candidate of physico-mathematical sciences (2003)
E-mail: ,
Keywords: Bifurcation, chaos, coupled oscillators, synchronization
   
Main publications:
  • A.P.Kuznetsov, S.P.Kuznetsov, L.V.Turukina, E.Mosekilde. Two-parameter analysis of the scaling behavior at the onset of chaos: Tricritical and pseudo-tricritical points. Physica A300, No 3-4, 2001, 367-385. 154. A.P. Kuznetsov, N.V. Stankevich and L.V. Turukina. Coupled van der Pol–Duffing oscillators: Phase dynamics and structure of synchronization tongues. Physica D238, 2009, No 14, 1203-1215. 156. L.V. Tyuryukina, A.S. Pikovskii. Giperbolicheskii khaos v nelineino svyazannykh ostsillyatorakh Landau – Styuarta s medlennoi modulyatsiei parametrov. Izvestiya vuzov – Prikladnaya nelineinaya dinamika, t.17, 2009, #2, 99-113.

http://www.mathnet.ru/eng/person63140
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
2018
1. S. P. Kuznetsov, L. V. Turukina, “Complex dynamics and chaos in electronic self-oscillator with saturation mechanism provided by parametric decay”, Izvestiya VUZ. Applied Nonlinear Dynamics, 26:1 (2018),  33–47  mathnet  elib
2015
2. Alexander P. Kuznetsov, Natalia A. Migunova, Igor R. Sataev, Yuliya V. Sedova, Ludmila V. Turukina, “From Chaos to Quasi-Periodicity”, Regul. Chaotic Dyn., 20:2 (2015),  189–204  mathnet  mathscinet  zmath  isi  scopus
2014
3. A. P. Kuznetsov, E. S. Seliverstova, D. I. Trubetskov, L. V. Turukina, “Phenomenon of the van der pol equation”, Izvestiya VUZ. Applied Nonlinear Dynamics, 22:4 (2014),  3–42  mathnet
4. A. P. Kuznetsov, L. V. Turukina, I. R. Sataev, N. Yu. Chernyshov, “Synchronization and multi-frequency quasi-periodicity in the dynamics of coupled oscillators”, Izvestiya VUZ. Applied Nonlinear Dynamics, 22:1 (2014),  27–54  mathnet
5. Alexander P. Kuznetsov, Natalia A. Migunova, Igor R. Sataev, Julia V. Sedova, Ludmila V. Turukina, “Dynamics of coupled chaotic oscillators: from chaos to quasiperiodicity”, Nelin. Dinam., 10:4 (2014),  387–405  mathnet
6. A. P. Kuznetsov, I. R. Sataev, L. V. Turukina, N. Yu. Chernyshov, “Synchronisation in the phase model of three coupled lasers”, Kvantovaya Elektronika, 44:1 (2014),  17–22  mathnet  elib [Quantum Electron., 44:1 (2014), 17–22  isi  scopus]
2013
7. Alexander P. Kuznetsov, Ludmila V. Turukina, Nikolay Yu. Chernyschov, “Dynamics and synchronization of the three coupled oscillators with reactive type of coupling”, Nelin. Dinam., 9:1 (2013),  11–25  mathnet
2012
8. Alexander P. Kuznetsov, Sergey P. Kuznetsov, Ludmila V. Turukina, I. R. Sataev, “Landau–Hopf scenario in the ensemble of interacting oscillators”, Nelin. Dinam., 8:5 (2012),  863–873  mathnet
2011
9. A. P. Kuznetsov, I. R. Sataev, L. V. Turukina, “Forced synchronization of two coupled van der Pol self-oscillators”, Nelin. Dinam., 7:3 (2011),  411–425  mathnet
2010
10. A. P. Kuznetsov, I. R. Sataev, L. V. Turukina, “Synchronization and multi-frequency oscillations in the chain of phase oscillators”, Nelin. Dinam., 6:4 (2010),  693–717  mathnet
2009
11. A. P. Kuznetsov, N. V. Stankevich, L. V. Turukina, “Stabilization by external pulses and synchronous response in the Rössler system before saddle-node bifurcation”, Nelin. Dinam., 5:2 (2009),  253–264  mathnet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020