RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Petrenko, Pavel Sergeevich

Statistics Math-Net.Ru
Total publications: 10
Scientific articles: 10

Number of views:
This page:201
Abstract pages:1878
Full texts:392
References:224
E-mail:

http://www.mathnet.ru/eng/person71778
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
2018
1. P. S. Petrenko, “Robust controllability of non-stationary differential-algebraic equations”, The Bulletin of Irkutsk State University. Series Mathematics, 25 (2018),  79–92  mathnet
2. P. S. Petrenko, “Robust controllability of linear differential-algebraic equations with unstructured uncertainty”, Sib. Zh. Ind. Mat., 21:3 (2018),  104–115  mathnet  elib; J. Appl. Industr. Math., 12:3 (2018), 519–530  elib  scopus
2017
3. P. S. Petrenko, “Observability of linear differential-algebraic equations in the class of Chebyshev functions”, The Bulletin of Irkutsk State University. Series Mathematics, 20 (2017),  61–74  mathnet
4. Pavel S. Petrenko, “Differential controllability of linear systems of differential-algebraic equations”, J. Sib. Fed. Univ. Math. Phys., 10:3 (2017),  320–329  mathnet  isi
2016
5. Pavel S. Petrenko, “Local $R$-observability of differential-algebraic equations”, J. Sib. Fed. Univ. Math. Phys., 9:3 (2016),  353–363  mathnet  isi
2015
6. P. S. Petrenko, A. A. Shcheglova, “Stabilization of solutions for nonlinear differential-algebraic equations”, Avtomat. i Telemekh., 2015, 4,  32–50  mathnet  elib; Autom. Remote Control, 76:4 (2015), 573–588  isi  scopus
2013
7. A. A. Shcheglova, P. S. Petrenko, “Regular systems of differential-algebraic equations”, The Bulletin of Irkutsk State University. Series Mathematics, 6:4 (2013),  107–127  mathnet
8. P. S. Petrenko, “Detectability of linear systems of differential-algebraic equations”, The Bulletin of Irkutsk State University. Series Mathematics, 6:3 (2013),  109–116  mathnet
2012
9. A. A. Shcheglova, P. S. Petrenko, “The $R$-observability and $R$-controllability of linear algebraic-differential systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, 3,  74–91  mathnet  mathscinet; Russian Math. (Iz. VUZ), 56:3 (2012), 66–82  scopus
2011
10. P. S. Petrenko, “Local R-controllability to zero of nonlinear algebraic-differential systems”, The Bulletin of Irkutsk State University. Series Mathematics, 4:4 (2011),  101–115  mathnet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021