RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Bolsinov Aleksei Viktorovich

Statistics Math-Net.Ru
Total publications: 38
Scientific articles: 36
Presentations: 10

Number of views:
This page:1963
Abstract pages:13316
Full texts:3717
References:1415
Professor
Doctor of physico-mathematical sciences
E-mail: , ,

http://www.mathnet.ru/eng/person8267
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/248231

Publications in Math-Net.Ru
1. Argument shift method and sectional operators: applications to differential geometry
A. V. Bolsinov
Fundam. Prikl. Mat., 20:3 (2015),  5–31
2. Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: Pro or contra?
A. V. Bolsinov, A. A. Kilin, A. O. Kazakov
J. Geom. Phys., 87 (2015),  61–75
3. Topology and bifurcations in nonholonomic mechanics
I. A. Bizyaev, A. V. Bolsinov, A. V. Borisov, I. S. Mamaev
Nelin. Dinam., 11:4 (2015),  735–762
4. Geometrisation of Chaplygin's reducing multiplier theorem
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev
Nonlinearity, 28:7 (2015),  2307–2318
5. Geometrization of the Chaplygin reducing-multiplier theorem
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev
Nelin. Dinam., 9:4 (2013),  627–640
6. Topological monodromy in nonholonomic systems
Alexey V. Bolsinov, Alexander A. Kilin, Alexey O. Kazakov
Nelin. Dinam., 9:2 (2013),  203–227
7. Rolling without spinning of a ball on a plane: absence of an invariant measure in a system with a complete set of first integrals
Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev
Nelin. Dinam., 8:3 (2012),  605–616
8. Rolling of a ball without spinning on a plane: the absence of an invariant measure in a system with a complete set of integrals
Alexey V. Bolsinov, Alexey V. Borisov, Ivan S. Mamaev
Regul. Chaotic Dyn., 17:6 (2012),  571–579
9. Алгебраические и геометрические свойства квадратичных гамильтонианов, задаваемых секционными операторами
A. V. Bolsinov, A. Yu. Konyaev
Mat. Zametki, 90:5 (2011),  689–702
10. The bifurcation analysis and the Conley index in mechanics
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev
Nelin. Dinam., 7:3 (2011),  649–681
11. Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev
Nelin. Dinam., 6:4 (2010),  829–854
12. Topology and stability of integrable systems
A. V. Bolsinov, A. V. Borisov, I. S. Mamaev
Uspekhi Mat. Nauk, 65:2(392) (2010),  71–132
13. A Formal Frobenius Theorem and Argument Shift
A. V. Bolsinov, K. M. Zuev
Mat. Zametki, 86:1 (2009),  3–13
14. Compatible Poisson Brackets on Lie Algebras
A. V. Bolsinov, A. V. Borisov
Mat. Zametki, 72:1 (2002),  11–34
15. Integrable geodesic flows on homogeneous spaces
A. V. Bolsinov, B. Jovanović
Mat. Sb., 192:7 (2001),  21–40
16. The method of loop molecules and the topology of the Kovalevskaya top
A. V. Bolsinov, P. H. Richter, A. T. Fomenko
Mat. Sb., 191:2 (2000),  3–42
17. Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
A. V. Bolsinov, I. A. Taimanov
Tr. Mat. Inst. Steklova, 231 (2000),  46–63
18. On an example of an integrable geodesic flow with positive topological entropy
A. V. Bolsinov, I. A. Taimanov
Uspekhi Mat. Nauk, 54:4(328) (1999),  157–158
19. Two-dimensional Riemannian metrics with integrable geodesic flows. Local and global geometry
A. V. Bolsinov, V. S. Matveev, A. T. Fomenko
Mat. Sb., 189:10 (1998),  5–32
20. Fomenko invariants in the theory of integrable Hamiltonian systems
A. V. Bolsinov
Uspekhi Mat. Nauk, 52:5(317) (1997),  113–132
21. On the dimension of the space of integrable Hamiltonian systems with two degrees of freedom
A. V. Bolsinov, A. T. Fomenko
Tr. Mat. Inst. Steklova, 216 (1997),  45–69
22. Singularities of momentum maps of integrable Hamiltonian systems with two degrees of freedom
A. V. Bolsinov, V. S. Matveev
Zap. Nauchn. Sem. POMI, 235 (1996),  54–86
23. Exact topological classification of Hamiltonian flows on smooth two-dimensional surfaces
A. V. Bolsinov, A. T. Fomenko
Zap. Nauchn. Sem. POMI, 235 (1996),  22–53
24. Orbital Classification of Geodesic Flows on Two-Dimensional Ellipsoids. The Jacobi Problem is Orbitally Equivalent to the Integrable Euler Case in Rigid Body Dynamics
A. V. Bolsinov, A. T. Fomenko
Funktsional. Anal. i Prilozhen., 29:3 (1995),  1–15
25. Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
A. V. Bolsinov, A. T. Fomenko
Izv. RAN. Ser. Mat., 59:1 (1995),  65–102
26. The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body
A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko
Uspekhi Mat. Nauk, 50:3(303) (1995),  3–32
27. A criterion for the topological conjugacy of Hamiltonian flows on two-dimensional compact surfaces
A. V. Bolsinov, A. T. Fomenko
Uspekhi Mat. Nauk, 50:1(301) (1995),  189–190
28. A smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom
A. V. Bolsinov
Mat. Sb., 186:1 (1995),  3–28
29. Integrable geodesic flows on the sphere, generated by Goryachev–Chaplygin and Kowalewski systems in the dynamics of a rigid body
A. V. Bolsinov, A. T. Fomenko
Mat. Zametki, 56:2 (1994),  139–142
30. The classification of Hamiltonian systems on two-dimensional surfaces
A. V. Bolsinov
Uspekhi Mat. Nauk, 49:6(300) (1994),  195–196
31. Smooth trajectory classification of integrable Hamiltonian systems with two degrees of freedom. The case of systems with planar atoms
A. V. Bolsinov
Uspekhi Mat. Nauk, 49:3(297) (1994),  173–174
32. Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. II
A. V. Bolsinov, A. T. Fomenko
Mat. Sb., 185:5 (1994),  27–78
33. Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I
A. V. Bolsinov, A. T. Fomenko
Mat. Sb., 185:4 (1994),  27–80
34. Three types bordisms of integrable systems with two degrees of freedom. Computation of bordism groups
A. V. Bolsinov, A. T. Fomenko, X. Zhang
Trudy Mat. Inst. Steklov., 205 (1994),  32–72
35. Unsolved problems in the theory of topological classification of integrable systems
A. V. Bolsinov, A. T. Fomenko
Trudy Mat. Inst. Steklov., 205 (1994),  18–31
36. Trajectory classification of integrable systems of Euler type in the dynamics of a rigid body
A. V. Bolsinov, A. T. Fomenko
Uspekhi Mat. Nauk, 48:5(293) (1993),  163–164
37. Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution
A. V. Bolsinov
Izv. Akad. Nauk SSSR Ser. Mat., 55:1 (1991),  68–92
38. Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity
A. V. Bolsinov, S. V. Matveev, A. T. Fomenko
Uspekhi Mat. Nauk, 45:2(272) (1990),  49–77
39. Involutory families of functions on dual spaces of Lie algebras of type $G\underset\varphi+ V$
A. V. Bolsinov
Uspekhi Mat. Nauk, 42:6(258) (1987),  183–184

40. Nikolaí N. Nekhoroshev
Alekseí V. Borisov, Alekseí V. Bolsinov, Anatolií I. Nejshtadt, Dmitrií A. Sadovskií, Boris I. Zhilinskií
Regul. Chaotic Dyn., 21:6 (2016),  593–598
41. Nikolai Nikolaevich Nekhoroshev (obituary)
A. M. Abramov, V. I. Arnol'd, A. V. Bolsinov, A. N. Varchenko, L. Galgani, B. I. Zhilinskii, Yu. S. Il'yashenko, V. V. Kozlov, A. I. Neishtadt, V. I. Piterbarg, A. G. Khovanskii, V. V. Yashchenko
Uspekhi Mat. Nauk, 64:3(387) (2009),  174–178

Presentations in Math-Net.Ru
1. Симплектические инварианты интегрируемых гамильтоновых систем: случай вырожденных особенностей
A. V. Bolsinov
Differential geometry and applications
April 2, 2018 16:45
2. Бипуассоновы линейные пространства
A. V. Bolsinov
Differential geometry and applications
February 15, 2016 16:45
3. The argument shift method and sectional operators: applications in differential geometry
A. V. Bolsinov
Lie groups and invariant theory
December 16, 2015 16:45
4. Poisson structures and Poisson algebras
A. V. Bolsinov
International scientific conference "Days of Classical Mechanics"
January 26, 2015 13:00   
5. Инварианты Жордана–Кронекера конечномерных алгебр Ли и их представлений
A. V. Bolsinov
Modern geometry methods
December 17, 2014 18:30
6. Argument shift method and section operators: new applications in differential geometry
A. V. Bolsinov
Differential geometry and applications
December 15, 2014 16:45
7. Projectively and c-projectively equivalent metrics
A. V. Bolsinov
Modern geometry methods
April 23, 2014 18:30
8. Obstructions to hamiltonization of non-holonomic systems and topological monodromy
A. V. Bolsinov
Modern geometry methods
March 27, 2013 18:30
9. Jordan–Kronecker invariants for finite-dimensional Lie algebras
A. V. Bolsinov
Differential geometry and applications
March 26, 2012 16:45
10. Berger algebras, special holonomy groups, and the shift-argument method
A. V. Bolsinov
Differential geometry and applications
April 25, 2011 16:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018