RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Zhuravlev, Vladimir Georgievich

Statistics Math-Net.Ru
Total publications: 67
Scientific articles: 64
Presentations: 1

Number of views:
This page:2334
Abstract pages:11828
Full texts:3312
References:1129
Professor
Doctor of physico-mathematical sciences
E-mail:

http://www.mathnet.ru/eng/person8781
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/192575

Publications in Math-Net.Ru
2018
1. V. G. Zhuravlev, “Unimodular invariance of karyon decompositions of algebraic numbers in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 469 (2018),  96–137  mathnet; J. Math. Sci. (N. Y.), 242:4 (2019), 531–559  scopus
2. V. G. Zhuravlev, “The unimodularity of the induced toric tilings”, Zap. Nauchn. Sem. POMI, 469 (2018),  64–95  mathnet; J. Math. Sci. (N. Y.), 242:4 (2019), 509–530  scopus
3. V. G. Zhuravlev, “The karyon algorithm for decomposition into multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 469 (2018),  32–63  mathnet; J. Math. Sci. (N. Y.), 242:4 (2019), 487–508  scopus
2017
4. V. G. Zhuravlev, “Simplex–karyon algorithm of multidimensional continued fraction expansion”, Tr. Mat. Inst. Steklova, 299 (2017),  283–303  mathnet  elib; Proc. Steklov Inst. Math., 299 (2017), 268–287  isi  scopus
5. V. G. Zhuravlev, “Local Pisot matricies and mutual approximations of algebraic numbers”, Zap. Nauchn. Sem. POMI, 458 (2017),  104–134  mathnet; J. Math. Sci. (N. Y.), 234:5 (2018), 659–679
6. V. G. Zhuravlev, “Fractional-linear invariance of the symplex-module algorithm for decomposition in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 458 (2017),  77–103  mathnet; J. Math. Sci. (N. Y.), 234:5 (2018), 640–658
7. V. G. Zhuravlev, “Fractional-linear invariance of multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 458 (2017),  42–76  mathnet; J. Math. Sci. (N. Y.), 234:5 (2018), 616–639
2016
8. V. G. Zhuravlev, “Induced bounded remainder sets”, Algebra i Analiz, 28:5 (2016),  171–194  mathnet  mathscinet  elib; St. Petersburg Math. J., 28:5 (2017), 671–688  isi  scopus
9. V. G. Zhuravlev, “Symmetrization of bounded remainder sets”, Algebra i Analiz, 28:4 (2016),  80–101  mathnet  mathscinet  elib; St. Petersburg Math. J., 28:4 (2017), 491–506  isi  scopus
10. V. G. Zhuravlev, “Periodic karyon expansions of cubic irrationals in continued fractions”, Sovrem. Probl. Mat., 23 (2016),  43–68  mathnet  elib; Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 36–60  isi  scopus
11. V. G. Zhuravlev, “Karyon expansions of Pisot numbers in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 449 (2016),  168–195  mathnet  mathscinet; J. Math. Sci. (N. Y.), 225:6 (2017), 950–968  scopus
12. V. G. Zhuravlev, “Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 449 (2016),  130–167  mathnet  mathscinet; J. Math. Sci. (N. Y.), 225:6 (2017), 924–949  scopus
13. V. G. Zhuravlev, “Periodic karyon expansions of algebraic units in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 449 (2016),  84–129  mathnet  mathscinet; J. Math. Sci. (N. Y.), 225:6 (2017), 893–923  scopus
14. V. G. Zhuravlev, “Bounded remainder sets”, Zap. Nauchn. Sem. POMI, 445 (2016),  93–174  mathnet  mathscinet; J. Math. Sci. (N. Y.), 222:5 (2017), 585–640  scopus
15. V. G. Zhuravlev, “Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers”, Zap. Nauchn. Sem. POMI, 445 (2016),  33–92  mathnet  mathscinet; J. Math. Sci. (N. Y.), 222:5 (2017), 544–584  scopus
2015
16. V. G. Zhuravlev, “Bounded remainder sets with respect to toric exchange transformations”, Algebra i Analiz, 27:2 (2015),  96–131  mathnet  mathscinet  elib; St. Petersburg Math. J., 27:2 (2016), 245–271  isi  scopus
17. V. G. Zuravlev, “Multi-colour bounded remainder sets”, Chebyshevskii Sb., 16:2 (2015),  93–116  mathnet  elib
18. V. G. Zhuravlev, “Multi-colour dynamical tilings of tori into bounded remainder sets”, Izv. RAN. Ser. Mat., 79:5 (2015),  65–102  mathnet  mathscinet  elib; Izv. Math., 79:5 (2015), 919–954  isi  scopus
19. V. G. Zhuravlev, “Dividing toric tilings and bounded remainder sets”, Zap. Nauchn. Sem. POMI, 440 (2015),  99–122  mathnet  mathscinet; J. Math. Sci. (N. Y.), 217:1 (2016), 65–80  scopus
20. V. G. Zhuravlev, “Two-dimension approximations by the method of dividing toric tilings”, Zap. Nauchn. Sem. POMI, 440 (2015),  81–98  mathnet  mathscinet; J. Math. Sci. (N. Y.), 217:1 (2016), 54–64  scopus
2014
21. V. G. Zhuravlev, “Imbedding of circular orbits and the distribution of fractional parts”, Algebra i Analiz, 26:6 (2014),  29–68  mathnet  mathscinet  elib; St. Petersburg Math. J., 26:6 (2015), 881–909  isi  elib  scopus
22. V. G. Zhuravlev, “Bounded remainder sets on the double covering of the Klein bottle”, Zap. Nauchn. Sem. POMI, 429 (2014),  82–105  mathnet; J. Math. Sci. (N. Y.), 207:6 (2015), 857–873  scopus
2012
23. V. G. Zhuravlev, “Moduli of toric tilings into bounded remainder sets and balanced words”, Algebra i Analiz, 24:4 (2012),  97–136  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 24:4 (2013), 601–629  isi  elib  scopus
24. V. G. Zhuravlev, “Multi-dimensional Hecke theorem on the distribution of fractional parts”, Algebra i Analiz, 24:1 (2012),  95–130  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 24:1 (2013), 71–97  isi  elib  scopus
25. V. G. Zhuravlev, “Bounded Remainder Polyhedra”, Sovrem. Probl. Mat., 16 (2012),  82–102  mathnet  zmath  elib; Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S71–S90  isi  scopus
2011
26. V. G. Zhuravlev, “The Hecke theorem: Form and Idea”, Chebyshevskii Sb., 12:1 (2011),  79–92  mathnet  mathscinet
27. V. G. Zhuravlev, “Exchanged toric developments and bounded remainder sets”, Zap. Nauchn. Sem. POMI, 392 (2011),  95–145  mathnet; J. Math. Sci. (N. Y.), 184:6 (2012), 716–745  scopus
2010
28. V. G. Zhuravlev, “Parametrization of a two-dimensional quasiperiodic Rauzy tiling”, Algebra i Analiz, 22:4 (2010),  21–56  mathnet  mathscinet  zmath; St. Petersburg Math. J., 22:4 (2011), 529–555  isi  scopus
29. V. G. Zhuravlev, “Geometrization of Hecke's theorem”, Chebyshevskii Sb., 11:1 (2010),  126–144  mathnet  mathscinet
30. V. G. Zhuravlev, “Hyperbolas over two-dimensional Fibonacci quasilattices”, Fundam. Prikl. Mat., 16:6 (2010),  45–62  mathnet  mathscinet  elib; J. Math. Sci., 182:4 (2012), 472–483  scopus
31. V. G. Zhuravlev, “One-dimensional Fibonacci tilings and induced two-colour rotations of the circle”, Izv. RAN. Ser. Mat., 74:2 (2010),  65–108  mathnet  mathscinet  zmath  elib; Izv. Math., 74:2 (2010), 281–323  isi  elib  scopus
2009
32. V. G. Zhuravlev, “Two-colour rotations of the unit circle”, Izv. RAN. Ser. Mat., 73:1 (2009),  79–120  mathnet  mathscinet  zmath  elib; Izv. Math., 73:1 (2009), 79–120  isi  elib  scopus
33. V. V. Krasil'shchikov, A. V. Shutov, V. G. Zhuravlev, “One-dimensional quasiperiodic tilings admitting progressions enclosure”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, 7,  3–9  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 53:7 (2009), 1–6
2008
34. V. G. Zhuravlev, “Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum”, Algebra i Analiz, 20:3 (2008),  18–46  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 20:3 (2009), 339–360  isi
2007
35. V. G. Zhuravlev, “One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations”, Algebra i Analiz, 19:3 (2007),  151–182  mathnet  mathscinet  zmath; St. Petersburg Math. J., 19:3 (2008), 431–454  isi
36. V. G. Zhuravlev, “The arithmetic of two-color rotations of the circle”, Chebyshevskii Sb., 8:2 (2007),  56–72  mathnet  mathscinet  zmath
37. V. G. Zhuravlev, “One-dimensional Fibonacci tilings”, Izv. RAN. Ser. Mat., 71:2 (2007),  89–122  mathnet  mathscinet  zmath  elib; Izv. Math., 71:2 (2007), 307–340  isi  elib  scopus
38. V. G. Zhuravlev, “The Pell equation over the $\circ$-Fibonacci ring”, Zap. Nauchn. Sem. POMI, 350 (2007),  139–159  mathnet; J. Math. Sci. (N. Y.), 150:3 (2008), 2084–2095  scopus
39. V. G. Zhuravlev, “The attraction domain for the attractor of a two-color circle rotation”, Zap. Nauchn. Sem. POMI, 350 (2007),  89–138  mathnet  elib; J. Math. Sci. (N. Y.), 150:3 (2008), 2056–2083  elib  scopus
2006
40. V. G. Zhuravlev, “Sums of squares over the Fibonacci $\circ$-ring”, Zap. Nauchn. Sem. POMI, 337 (2006),  165–190  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 143:3 (2007), 3108–3123  scopus
2005
41. V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets on the torus”, Zap. Nauchn. Sem. POMI, 322 (2005),  83–106  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 137:2 (2006), 4658–4672  scopus
2002
42. V. G. Zhuravlev, “Growth of random tilings of graphs: between crystal and chaos”, Algebra i Analiz, 14:6 (2002),  129–168  mathnet  mathscinet  zmath; St. Petersburg Math. J., 14:6 (2003), 985–1015
2001
43. V. G. Zhuravlev, “Self-similar growth of periodic partitions and graphs”, Algebra i Analiz, 13:2 (2001),  69–92  mathnet  mathscinet  zmath; St. Petersburg Math. J., 13:2 (2002), 201–220
44. V. G. Zhuravlev, “Deformations of quadratic Diophantine systems”, Izv. RAN. Ser. Mat., 65:6 (2001),  15–56  mathnet  mathscinet  zmath; Izv. Math., 65:6 (2001), 1085–1126  scopus
45. V. G. Zhuravlev, A. A. Yudin, “Random walks on plane crystallographic groups”, Zap. Nauchn. Sem. POMI, 276 (2001),  204–218  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 118:1 (2003), 4852–4860
1999
46. V. G. Zhuravlev, “Primitive embeddings into local lattices of prime determinant”, Algebra i Analiz, 11:1 (1999),  87–117  mathnet  mathscinet  zmath; St. Petersburg Math. J., 11:1 (2000), 67–90
47. V. G. Zhuravlev, “Embedding $p$-elementary lattices”, Izv. RAN. Ser. Mat., 63:1 (1999),  77–106  mathnet  mathscinet  zmath; Izv. Math., 63:1 (1999), 73–102  isi  scopus
1997
48. V. G. Zhuravlev, “Orbits of representations of numbers by local quadratic forms”, Tr. Mat. Inst. Steklova, 218 (1997),  151–164  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 218 (1997), 146–159
1996
49. V. G. Zhuravlev, “Representation of a form by a genus of quadratic forms”, Algebra i Analiz, 8:1 (1996),  21–112  mathnet  mathscinet  zmath; St. Petersburg Math. J., 8:1 (1997), 15–84
1995
50. V. G. Zhuravlev, “Multiplicative arithmetic of theta-series of odd quadratic forms”, Izv. RAN. Ser. Mat., 59:3 (1995),  77–140  mathnet  mathscinet  zmath; Izv. Math., 59:3 (1995), 517–578  isi
1994
51. V. G. Zhuravlev, “Spherical theta-series and Hecke operators”, Trudy Mat. Inst. Steklov., 207 (1994),  93–122  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 207 (1995), 87–110
52. V. G. Zhuravlev, “Euler decompositions for theta-series of even quadratic forms”, Zap. Nauchn. Sem. POMI, 212 (1994),  97–113  mathnet  mathscinet  zmath; J. Math. Sci., 83:6 (1997), 750–761
1993
53. V. G. Zhuravlev, “Generalized Eichler–Brandt matrices, Hecke operators, and vector-valued theta series”, Algebra i Analiz, 5:3 (1993),  143–178  mathnet  mathscinet  zmath; St. Petersburg Math. J., 5:3 (1994), 545–576
1991
54. V. G. Zuravlev, “A correspondence between theta series of ternary and quasiternary quadratic forms”, Zap. Nauchn. Sem. LOMI, 196 (1991),  61–82  mathnet  mathscinet  zmath; J. Math. Sci., 70:6 (1994), 2097–2111
1990
55. V. G. Zuravlev, “Local duality for Hecke operators for symplectic and orthogonal groups”, Zap. Nauchn. Sem. LOMI, 185 (1990),  37–59  mathnet  mathscinet  zmath; J. Soviet Math., 59:6 (1992), 1159–1173
1989
56. V. G. Zhuravlev, “The trace of Hecke operators of quaternion quadratic spaces”, Algebra i Analiz, 1:6 (1989),  149–166  mathnet  mathscinet  zmath; Leningrad Math. J., 1:6 (1990), 1459–1478
1986
57. V. G. Zhuravlev, “Explicit duality formulas for symplectic and orthogonal Hecke operators on theta-series of positive quadratic forms”, Mat. Sb. (N.S.), 130(172):3(7) (1986),  413–430  mathnet  mathscinet  zmath; Math. USSR-Sb., 58:2 (1987), 417–434
1984
58. V. G. Zhuravlev, “Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties”, Mat. Sb. (N.S.), 123(165):2 (1984),  174–194  mathnet  mathscinet  zmath; Math. USSR-Sb., 51:1 (1985), 169–190
1983
59. V. G. Zhuravlev, “Hecke rings for a covering of the symplectic group”, Mat. Sb. (N.S.), 121(163):3(7) (1983),  381–402  mathnet  mathscinet  zmath; Math. USSR-Sb., 49:2 (1984), 379–399
1982
60. V. G. Zhuravlev, “Euler products for Hilbert–Siegel modular forms of genus $2$”, Mat. Sb. (N.S.), 117(159):4 (1982),  449–468  mathnet  mathscinet  zmath; Math. USSR-Sb., 45:4 (1983), 439–460
1980
61. V. G. Zhuravlev, “Hecke operators of the symplectic group of degree two over a real field”, Zap. Nauchn. Sem. LOMI, 100 (1980),  48–58  mathnet  mathscinet  zmath; J. Soviet Math., 19:6 (1982), 1652–1659
1978
62. V. G. Zhuravlev, “Zeros on the critical line of Dirichlet series associated with Hilbert modular forms”, Zap. Nauchn. Sem. LOMI, 76 (1978),  89–123  mathnet  mathscinet  zmath; J. Soviet Math., 18:3 (1982), 350–373
63. V. G. Zhuravlev, “Zeros of the Dirichlet $L$-functions on short segments of the critical line”, Zap. Nauchn. Sem. LOMI, 76 (1978),  72–88  mathnet  mathscinet  zmath; J. Soviet Math., 18:3 (1982), 339–350
1976
64. V. G. Zhuravlev, “The zeros of a Dirichlet $L$ function on the critical line”, Mat. Zametki, 19:4 (1976),  561–570  mathnet  mathscinet  zmath; Math. Notes, 19:4 (1976), 341–346

2017
65. A. V. Shutov, V. G. Zhuravlev, A. S. Balci, M. B. Khripunova, “Boris Veniaminovich Levin. On his 90th anniversary”, Chebyshevskii Sb., 18:2 (2017),  315–330  mathnet  elib
2009
66. M. B. Khripunova, V. G. Zhuravlev, A. A. Zhukova, E. P. Davletyarova, “Aleksandr Aleksandrovich Yudin”, Chebyshevskii Sb., 10:1 (2009),  109–113  mathnet  mathscinet
2003
67. G. I. Arkhipov, V. G. Zhuravlev, V. A. Iskovskikh, A. A. Karatsuba, M. B. Levina-Khripunova, V. N. Chubarikov, A. A. Yudin, “Nikolai Mikhailovich Timofeev (obituary)”, Uspekhi Mat. Nauk, 58:4(352) (2003),  135–138  mathnet  mathscinet  zmath; Russian Math. Surveys, 58:4 (2003), 773–776  isi

Presentations in Math-Net.Ru
1. Simplex-modular algorithm for the decomposition of algebraic numbers into multidimensional continued fractions
V. G. Zhuravlev
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 23, 2017 15:25   

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019