RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Kamynin, Leonid Ivanovich

Statistics Math-Net.Ru
Total publications: 99
Scientific articles: 98

Number of views:
This page:1794
Abstract pages:9385
Full texts:3894
References:149
Professor
Doctor of physico-mathematical sciences (1968)
Birth date: 10.04.1923

http://www.mathnet.ru/eng/person8795
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/190200

Publications in Math-Net.Ru
2001
1. L. I. Kamynin, B. N. Khimchenko, “A priori estimates for the solution of the first boundary-value problem for a class of second-order parabolic systems”, Izv. RAN. Ser. Mat., 65:4 (2001),  67–88  mathnet  mathscinet  zmath; Izv. Math., 65:4 (2001), 705–726  scopus
1996
2. L. I. Kamynin, B. N. Khimchenko, “Necessary and sufficient conditions for satisfying the weak extremum principle for second-order, elliptic systems”, Sibirsk. Mat. Zh., 37:6 (1996),  1314–1334  mathnet  mathscinet  zmath; Siberian Math. J., 37:6 (1996), 1153–1170  isi
3. L. I. Kamynin, “Unilateral estimates for solutions to the second and third boundary value problems (with oblique derivative) for a strongly dissipative second-order parabolic equation”, Sibirsk. Mat. Zh., 37:5 (1996),  1081–1102  mathnet  mathscinet  zmath; Siberian Math. J., 37:5 (1996), 950–969  isi
1995
4. L. I. Kamynin, B. N. Khimchenko, “On a weak extremum principle for a second-order elliptic system”, Izv. RAN. Ser. Mat., 59:5 (1995),  73–84  mathnet  mathscinet  zmath; Izv. Math., 59:5 (1995), 949–961  isi
1994
5. L. I. Kamynin, B. N. Khimchenko, “One-sided estimates for the solutions of the Cauchy problem for second-order parabolic equations in classes of rapidly growing functions. III”, Differ. Uravn., 30:10 (1994),  1750–1759  mathnet  mathscinet; Differ. Equ., 30:10 (1994), 1618–1627
6. L. I. Kamynin, B. N. Khimchenko, “One-sided estimates for the solutions of the Cauchy problem for second-order parabolic equations in classes of rapidly growing functions. II”, Differ. Uravn., 30:8 (1994),  1362–1369  mathnet  mathscinet; Differ. Equ., 30:8 (1994), 1262–1269
7. L. I. Kamynin, B. N. Khimchenko, “One-sided estimates for the solutions of the Cauchy problem for second-order parabolic equations in classes of rapidly growing functions. I”, Differ. Uravn., 30:5 (1994),  838–846  mathnet  mathscinet; Differ. Equ., 30:5 (1994), 772–779
8. L. I. Kamynin, “Unilateral estimates for a solution to the first boundary value problem for a strongly dissipative second-order parabolic equation over an unbounded domain”, Sibirsk. Mat. Zh., 35:1 (1994),  105–117  mathnet  mathscinet  zmath; Siberian Math. J., 35:1 (1994), 96–107  isi
1991
9. L. I. Kamynin, “Application of parabolic potentials to boundary value problems in mathematical physics. III”, Differ. Uravn., 27:5 (1991),  836–849  mathnet  mathscinet; Differ. Equ., 27:5 (1991), 582–595
10. L. I. Kamynin, “Applications of parabolic potentials to boundary value problems in mathematical physics. II”, Differ. Uravn., 27:4 (1991),  627–641  mathnet  mathscinet; Differ. Equ., 27:4 (1991), 441–453
11. L. I. Kamynin, “Applications of parabolic potentials to boundary value problems in mathematical physics. I”, Differ. Uravn., 27:3 (1991),  487–496  mathnet  mathscinet; Differ. Equ., 27:3 (1991), 348–355
12. L. I. Kamynin, “Applications of parabolic Pagni potentials to boundary value problems in mathematical physics. II”, Differ. Uravn., 27:2 (1991),  250–263  mathnet  mathscinet; Differ. Equ., 27:2 (1991), 176–187
1990
13. L. I. Kamynin, “Applications of parabolic Pagni potentials to boundary value problems in mathematical physics. I”, Differ. Uravn., 26:5 (1990),  829–841  mathnet  mathscinet; Differ. Equ., 26:5 (1990), 596–606
1989
14. L. I. Kamynin, “Smoothness of parabolic Pagni potentials. III. Proof of a theorem on the smoothness of a Pagni parabolic potential of a simple layer”, Differ. Uravn., 25:5 (1989),  843–860  mathnet  mathscinet; Differ. Equ., 25:5 (1989), 602–618
15. L. I. Kamynin, “Smoothness of parabolic Pagni potentials. II. Proof of theorems on smoothness of direct values of Pagni potentials”, Differ. Uravn., 25:4 (1989),  659–674  mathnet  mathscinet; Differ. Equ., 25:4 (1989), 452–463
16. L. I. Kamynin, “Smoothness of parabolic Pagni potentials. I”, Differ. Uravn., 25:3 (1989),  477–490  mathnet  mathscinet; Differ. Equ., 25:3 (1989), 335–346
1988
17. L. I. Kamynin, “A theorem on an oblique derivative for second-order parabolic equations that admit weak degeneration. II”, Differ. Uravn., 24:5 (1988),  863–875  mathnet  mathscinet; Differ. Equ., 24:5 (1988), 572–582
18. L. I. Kamynin, “A theorem on an oblique derivative for second-order parabolic equations that admit weak degeneration. I”, Differ. Uravn., 24:4 (1988),  650–661  mathnet  mathscinet; Differ. Equ., 24:4 (1988), 456–464
19. L. I. Kamynin, “On the existence of solutions of the Cauchy problem and of linear boundary value problems for a second-order parabolic equation in an unbounded domain. II”, Differ. Uravn., 24:3 (1988),  445–455  mathnet  mathscinet; Differ. Equ., 24:3 (1988), 314–322
20. L. I. Kamynin, B. N. Khimchenko, “An isotropic uniqueness theorem for the solution to the Cauchy problem for a second-order parabolic equation”, Differ. Uravn., 24:1 (1988),  73–85  mathnet  mathscinet; Differ. Equ., 24:1 (1988), 57–66
1987
21. L. I. Kamynin, “On the existence of solutions of the Cauchy problem and of linear boundary value problems for a second-order parabolic equation in an unbounded domain. I”, Differ. Uravn., 23:11 (1987),  1937–1948  mathnet  mathscinet
1986
22. L. I. Kamynin, B. N. Khimchenko, “A theorem on the space derivative for a second-order one-dimensional parabolic equation”, Differ. Uravn., 22:10 (1986),  1754–1764  mathnet  mathscinet
23. L. I. Kamynin, B. N. Khimchenko, “A theorem on the interior derivative for an elliptic-parabolic equation of Kolmogorov type”, Differ. Uravn., 22:8 (1986),  1400–1409  mathnet  mathscinet
24. L. I. Kamynin, “Uniqueness of the solution of linear boundary value problems for a second-order degenerate parabolic equation in an unbounded domain. II”, Differ. Uravn., 22:2 (1986),  305–315  mathnet  mathscinet
1985
25. L. I. Kamynin, “Uniqueness of the solution of linear boundary value problems for a second-order degenerate parabolic equation in an unbounded domain. I”, Differ. Uravn., 21:11 (1985),  1959–1970  mathnet  mathscinet
26. L. I. Kamynin, B. N. Khimchenko, “Anisotropic classes of uniqueness of the solution of the Cauchy problem for a second-order parabolic equation. II”, Differ. Uravn., 21:8 (1985),  1399–1407  mathnet  mathscinet
27. L. I. Kamynin, B. N. Khimchenko, “Anisotropic classes of uniqueness of the solution of the Cauchy problem for a second-order parabolic equation. I”, Differ. Uravn., 21:5 (1985),  832–841  mathnet  mathscinet
28. L. I. Kamynin, “A theorem on the internal derivative for a weakly degenerate second-order elliptic equation”, Mat. Sb. (N.S.), 126(168):3 (1985),  307–326  mathnet  mathscinet  zmath; Math. USSR-Sb., 54:2 (1986), 297–316
1984
29. L. I. Kamynin, B. N. Khimchenko, “A theorem on the interior derivative for a second-order parabolic equation”, Dokl. Akad. Nauk SSSR, 279:6 (1984),  1311–1314  mathnet  mathscinet  zmath
30. L. I. Kamynin, B. N. Khimchenko, “A theorem on an infinite derivative for a second-order parabolic equation with a nonnegative characteristic form”, Differ. Uravn., 20:12 (1984),  2103–2112  mathnet  mathscinet
31. L. I. Kamynin, B. N. Khimchenko, “A theorem on one-sided a priori boundary estimation for the solution of a second-order degenerate parabolic equation”, Differ. Uravn., 20:10 (1984),  1744–1753  mathnet  mathscinet
32. L. I. Kamynin, B. N. Khimchenko, “Theorems on the sign of a derivative for a second-order elliptic-parabolic equation”, Differ. Uravn., 20:4 (1984),  641–652  mathnet  mathscinet
33. L. I. Kamynin, “Uniqueness of the solution of the first boundary value problem in an unbounded domain for a second-order parabolic equation”, Zh. Vychisl. Mat. Mat. Fiz., 24:9 (1984),  1331–1345  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 24:5 (1984), 32–40
34. L. I. Kamynin, B. N. Khimchenko, “Local Lipschitz boundary estimates for solutions of second-order parabolic equations with nonnegative characteristic form”, Zh. Vychisl. Mat. Mat. Fiz., 24:2 (1984),  240–253  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 24:1 (1984), 145–154
1983
35. L. I. Kamynin, B. N. Khimchenko, “On an aspect of the uniqueness problem for second-order parabolic equations”, Dokl. Akad. Nauk SSSR, 270:2 (1983),  274–277  mathnet  mathscinet  zmath
36. L. I. Kamynin, B. N. Khimchenko, “A countertheorem of Giraud type for a second-order parabolic equation with nonnegative characteristic form”, Differ. Uravn., 19:10 (1983),  1700–1713  mathnet  mathscinet
37. L. I. Kamynin, B. N. Khimchenko, “An aspect of the development of the theory of the anisotropic strict extremum principle of A. D. Aleksandrov”, Differ. Uravn., 19:3 (1983),  426–437  mathnet  mathscinet
1982
38. L. I. Kamynin, “On the uniqueness of solutions of a linear boundary value problem for a second order elliptic-parabolic equation”, Dokl. Akad. Nauk SSSR, 262:4 (1982),  791–794  mathnet  mathscinet  zmath
1981
39. L. I. Kamynin, B. N. Khimchenko, “On the anisotropic strict extremum principle for a second order elliptic-parabolic equation”, Dokl. Akad. Nauk SSSR, 258:2 (1981),  288–293  mathnet  mathscinet  zmath
40. L. I. Kamynin, B. N. Khimchenko, “The strict extremum principle for a weakly parabolically connected, second-order operator”, Zh. Vychisl. Mat. Mat. Fiz., 21:4 (1981),  907–925  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 21:4 (1981), 92–110
1980
41. L. I. Kamynin, B. N. Khimchenko, “On Tihonov–Täcklind classes of uniqueness for degenerate parabolic equations of second order”, Dokl. Akad. Nauk SSSR, 252:4 (1980),  784–788  mathnet  mathscinet  zmath
42. L. I. Kamynin, B. N. Khimchenko, “An aspect of the development of the theory of the isotropic strict extremum principle of A. D. Aleksandrov”, Differ. Uravn., 16:2 (1980),  280–292  mathnet  mathscinet
43. L. I. Kamynin, B. N. Khimchenko, “On the strong extremum principle for a D-$(\Pi,\Omega)$-elliptically connected operator of second order”, Mat. Sb. (N.S.), 112(154):1(5) (1980),  24–55  mathnet  mathscinet  zmath; Math. USSR-Sb., 40:1 (1981), 21–50  isi
1979
44. L. I. Kamynin, B. N. Khimchenko, “On uniqueness of the solution of the Cauchy problem for a second order parabolic equation with nonnegative characteristic form”, Dokl. Akad. Nauk SSSR, 248:2 (1979),  290–294  mathnet  mathscinet  zmath
45. L. I. Kamynin, B. N. Khimchenko, “Investigations on the isotropic strict extremum principle”, Dokl. Akad. Nauk SSSR, 244:6 (1979),  1312–1316  mathnet  mathscinet  zmath
46. L. I. Kamynin, B. N. Khimchenko, “The strict extremum principle for a $D-(\Phi , \Omega )$-elliptically connected second-order operator”, Differ. Uravn., 15:7 (1979),  1307–1317  mathnet  mathscinet  zmath
47. L. I. Kamynin, B. N. Khimchenko, “An isotropic strict extremum principle in a planar domain”, Differ. Uravn., 15:7 (1979),  1296–1306  mathnet  mathscinet  zmath
48. L. I. Kamynin, B. N. Khimchenko, “A strong extremum principle for weakly elliptically connected second-order operators”, Zh. Vychisl. Mat. Mat. Fiz., 19:1 (1979),  129–142  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 19:1 (1979), 133–147
1978
49. L. I. Kamynin, B. N. Khimchenko, “Investigations on the maximum principle”, Dokl. Akad. Nauk SSSR, 240:4 (1978),  774–777  mathnet  mathscinet  zmath
50. L. I. Kamynin, “Uniqueness of boundary value problems for a second-order degenerate elliptic equation”, Differ. Uravn., 14:1 (1978),  39–49  mathnet  mathscinet  zmath
51. L. I. Kamynin, B. N. Khimchenko, “On local estimates near the boundary of solutions of a second order equation with nonnegative characteristic form”, Mat. Sb. (N.S.), 106(148):2(6) (1978),  162–182  mathnet  mathscinet  zmath; Math. USSR-Sb., 34:6 (1978), 715–735
1977
52. L. I. Kamynin, B. N. Khimchenko, “On a strong extremum principle for degenerating parabolic equations of second order”, Dokl. Akad. Nauk SSSR, 236:5 (1977),  1060–1063  mathnet  mathscinet  zmath
53. L. I. Kamynin, B. N. Khimchenko, “On a priori boundary estimates for the solutions of second order equations with nonnegative characteristic form”, Dokl. Akad. Nauk SSSR, 232:1 (1977),  16–19  mathnet  mathscinet  zmath
1976
54. B. N. Khimchenko, L. I. Kamynin, “On local estimates of a solution of a second-order parabolic equation near the lower cap of a parabolic boundary”, Dokl. Akad. Nauk SSSR, 227:3 (1976),  543–546  mathnet  mathscinet  zmath
55. L. I. Kamynin, “The uniqueness of the solution of a boundary value problem with A. A. Samarskii's boundary conditions for a second order parabolic equation”, Zh. Vychisl. Mat. Mat. Fiz., 16:6 (1976),  1480–1488  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 16:6 (1976), 96–104
1975
56. L. I. Kamynin, B. N. Khimchenko, “On theorems of Giraud type for a second-order elliptic operator weakly degenerate near the boundary”, Dokl. Akad. Nauk SSSR, 224:4 (1975),  752–755  mathnet  mathscinet  zmath
1974
57. L. I. Kamynin, B. N. Khimchenko, “The maximum principle and local regularity (in the Lipschitz sense) of solutions of a second-order parabolic equation near the lateral part of the parabolic boundary”, Dokl. Akad. Nauk SSSR, 219:4 (1974),  785–788  mathnet  mathscinet  zmath
1972
58. L. I. Kamynin, B. N. Khimchenko, “On applications of the maximum principle to parabolic equations of second order”, Dokl. Akad. Nauk SSSR, 204:3 (1972),  529–532  mathnet  mathscinet  zmath
59. L. I. Kamynin, “On the Gevrey theory for parabolic potentials. VI”, Differ. Uravn., 8:6 (1972),  1015–1025  mathnet  mathscinet  zmath
60. L. I. Kamynin, “Gevreys theory for parabolic potentials. V”, Differ. Uravn., 8:3 (1972),  494–509  mathnet  zmath
61. L. I. Kamynin, “On the Gevrey theory for parabolic potentials. IV, V”, Differ. Uravn., 8:2 (1972),  318–332  mathnet  mathscinet  zmath
1971
62. L. I. Kamynin, B. N. Khimchenko, “On the maximum principle for parabolic equations of second order”, Dokl. Akad. Nauk SSSR, 200:2 (1971),  282–285  mathnet  mathscinet  zmath
63. L. I. Kamynin, “On the Gevrey theory for parabolic potentials. III”, Differ. Uravn., 7:8 (1971),  1473–1489  mathnet  mathscinet  zmath
64. L. I. Kamynin, “On the Gevrey theory for parabolic potentials. I, II”, Differ. Uravn., 7:4 (1971),  711–726  mathnet  mathscinet  zmath
65. L. I. Kamynin, “On the Gevrey theory for parabolic potentials. I, II”, Differ. Uravn., 7:2 (1971),  312–328  mathnet  mathscinet  zmath
1969
66. L. I. Kamynin, “Solution of the fourth and fifth boundary value problems for a one-dimensional second-order parabolic equation in a curvilinear region”, Zh. Vychisl. Mat. Mat. Fiz., 9:3 (1969),  558–572  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 9:3 (1969), 77–96
1968
67. L. I. Kamynin, “The Ljapunov–Gjunter theorems for special thermal potentials”, Dokl. Akad. Nauk SSSR, 179:3 (1968),  531–533  mathnet  mathscinet  zmath
68. L. I. Kamynin, “On the smoothness of thermal potentials. VI. Special thermal potentials $P$ and $Q$ on surfaces of type $^{m+1,\alpha,\alpha/2}_{2m+1,1,(1+\alpha)/2}$ and $^{m+1,1,(1+\alpha)/2}_{2m+3,\alpha,\alpha/2}$”, Differ. Uravn., 4:11 (1968),  2034–2055  mathnet  mathscinet  zmath
69. L. I. Kamynin, “On the smoothness of thermal potentials. VI. Special thermal potentials $P$ and $Q$ on surfaces of type $^{m+1,\alpha,\alpha/2}_{2m+1,1,(1+\alpha)/2}$ and $^{m+1,1,(1+\alpha)/2}_{2m+3,\alpha,\alpha/2}$”, Differ. Uravn., 4:10 (1968),  1867–1891  mathnet  mathscinet  zmath
70. L. I. Kamynin, “On the smoothness of thermal potentials. V. Thermal potentials $U,$ $V$ and $W$ on surfaces of type $^{m+1,\alpha,\alpha/2}_{2m+1,1,(1+\alpha)/2}$ and $^{m+1,1,(1+\alpha)/2}_{2m+3,\alpha,\alpha/2}$. II”, Differ. Uravn., 4:5 (1968),  881–895  mathnet  mathscinet
71. L. I. Kamynin, “On the smoothness of thermal potentials. V. Thermal potentials $U, V$ and $W$ on surfaces of type $^{m+1,\alpha,\alpha/2}_{2m+1,1,(1+\alpha)/2}$ and $^{m+1,1,(1+\alpha)/2}_{2m+3,\alpha,\alpha/2}$”, Differ. Uravn., 4:2 (1968),  347–365  mathnet  mathscinet  zmath
72. L. I. Kamynin, “The theory of thermal potentials and its applications”, Mat. Zametki, 4:1 (1968),  113–123  mathnet  mathscinet; Math. Notes, 4:1 (1968), 555–561
1967
73. L. I. Kamynin, “On the smoothness of thermal potentials. IV”, Differ. Uravn., 3:8 (1967),  1303–1312  mathnet  mathscinet  zmath
74. L. I. Kamynin, “Smoothness of thermal potentials. IV. Application of the theory of thermal potentials to the solution of a problem of biophysics on the distribution of concentrations in a living cell”, Differ. Uravn., 3:6 (1967),  948–964  mathnet  mathscinet  zmath
75. L. I. Kamynin, “The maximum principle and boundary $\alpha$-estimates of the solution of the first boundary value problem for a parabolic equation in a non-cylindrical region”, Zh. Vychisl. Mat. Mat. Fiz., 7:3 (1967),  551–567  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 7:3 (1967), 104–127
1966
76. L. I. Kamynin, “A problem of biophysics”, Dokl. Akad. Nauk SSSR, 169:4 (1966),  761–764  mathnet  mathscinet  zmath
77. L. I. Kamynin, “On the smoothness of thermal potentials. III”, Differ. Uravn., 2:11 (1966),  1484–1501  mathnet  mathscinet  zmath
78. L. I. Kamynin, “On the smoothness of thermal potentials. III. A special single layer thermal potential $P(x, t)$ on surfaces of type $^{0,1,\frac{1+\alpha}2}_{1,\alpha,\alpha/2}$ and $_{1,1,\frac{1+\alpha}2}^{1,\alpha,\alpha/2}$”, Differ. Uravn., 2:10 (1966),  1333–1357  mathnet  mathscinet  zmath
79. L. I. Kamynin, “On the smoothness of thermal potentials. II. Thermal potentials on the surface of type $^{1,\alpha,\alpha/2}_{1,1,(1+\alpha)/2}$”, Differ. Uravn., 2:5 (1966),  647–687  mathnet  mathscinet  zmath
1965
80. L. I. Kamynin, V. N. Maslennikova, “Boundary estimates for the solution of an inclined derivative problem for a parabolic equation in a non-cylindrical domain”, Dokl. Akad. Nauk SSSR, 160:3 (1965),  527–529  mathnet  mathscinet  zmath
81. L. I. Kamynin, “Ljapunov theorems for heat potentials”, Dokl. Akad. Nauk SSSR, 160:2 (1965),  271–273  mathnet  mathscinet  zmath
82. L. I. Kamynin, “On the smoothness of thermal potentials”, Differ. Uravn., 1:6 (1965),  799–839  mathnet  mathscinet  zmath
1964
83. L. I. Kamynin, “The existence of a solution of boundary-value problems for a parabolic equation with discontinuous coefficients”, Izv. Akad. Nauk SSSR Ser. Mat., 28:4 (1964),  721–744  mathnet  mathscinet  zmath
84. L. I. Kamynin, “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, Zh. Vychisl. Mat. Mat. Fiz., 4:6 (1964),  1006–1024  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59
1963
85. L. I. Kamynin, V. N. Maslennikova, “Boundary estimates for the solution of the third boundary-value problem for a parabolic equation”, Dokl. Akad. Nauk SSSR, 153:3 (1963),  526–529  mathnet  mathscinet  zmath
86. L. I. Kamynin, “On the linear Verigin problem”, Dokl. Akad. Nauk SSSR, 150:6 (1963),  1210–1213  mathnet  mathscinet  zmath
1962
87. L. I. Kamynin, “On the method of potentials for a parabolic equation with discontinuous coefficients”, Dokl. Akad. Nauk SSSR, 145:6 (1962),  1213–1216  mathnet  mathscinet  zmath
88. L. I. Kamynin, “A hydraulics problem”, Dokl. Akad. Nauk SSSR, 143:4 (1962),  779–781  mathnet  mathscinet
89. L. I. Kamynin, V. N. Maslennikova, “The solution of the first boundary-value problem for a quasi-linear parabolic equation in non-cylindrical regions”, Mat. Sb. (N.S.), 57(99):2 (1962),  241–264  mathnet  mathscinet  zmath
90. L. I. Kamynin, “On the existence of a solution of Verigin's problem”, Zh. Vychisl. Mat. Mat. Fiz., 2:5 (1962),  833–858  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 2:5 (1963), 954–987
1961
91. L. I. Kamynin, “Dependence upon the boundary of the solution of the mixed problem for a parabolic equation”, Dokl. Akad. Nauk SSSR, 140:6 (1961),  1244–1247  mathnet  mathscinet  zmath
92. L. I. Kamynin, “The solution of boundary-value problems for a parabolic equation with discontinuous coefficients”, Dokl. Akad. Nauk SSSR, 139:5 (1961),  1048–1051  mathnet  mathscinet
93. L. I. Kamynin, V. N. Maslennikova, “The solution of the first boundary problem in the large for a quasilinear parabolic equation”, Dokl. Akad. Nauk SSSR, 137:5 (1961),  1049–1052  mathnet  mathscinet  zmath
94. L. I. Kamynin, “The stability of parabolic difference equations”, Dokl. Akad. Nauk SSSR, 136:6 (1961),  1287–1290  mathnet  mathscinet  zmath
1960
95. L. I. Kamynin, V. N. Maslennikova, “Certain properties of solutions of mixed problems for a parabolic equation with discontinuous coefficients”, Dokl. Akad. Nauk SSSR, 133:5 (1960),  1003–1006  mathnet  mathscinet  zmath
96. A. Chifligu, V. N. Maslennikova, L. I. Kamynin, “On the applicability of Fouriers method to the solution of the first boundary value problem for a quasilinear equation”, Dokl. Akad. Nauk SSSR, 130:4 (1960),  738–741  mathnet  mathscinet  zmath
1953
97. L. I. Kamynin, “On application of the method of finite differences to the solution of the heat conduction equation. II. Convergence of the finite-difference process for the equation of heat conduction”, Izv. Akad. Nauk SSSR Ser. Mat., 17:3 (1953),  249–268  mathnet  mathscinet  zmath
98. L. I. Kamynin, “On applicability of the method of finite differences to the solution of the equation of heat conduction. I. Uniqueness of solution of a system of finite-difference equations”, Izv. Akad. Nauk SSSR Ser. Mat., 17:2 (1953),  163–180  mathnet  mathscinet  zmath

1968
99. L. I. Kamynin, “”, Differ. Uravn., 4:3 (1968),  564  mathnet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019