RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Shevaldin, Valerii Trifonovich

Statistics Math-Net.Ru
Total publications: 40
Scientific articles: 39

Number of views:
This page:2496
Abstract pages:8632
Full texts:2871
References:922
Head Scientist Researcher
Doctor of physico-mathematical sciences
E-mail: ,

http://www.mathnet.ru/eng/person8871
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/206798

Publications in Math-Net.Ru
2019
1. V. T. Shevaldin, “Algorithms for the construction of third-order local exponential splines with equidistant knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  279–287  mathnet  elib
2. Yu. N. Subbotin, V. T. Shevaldin, “A method of construction of local parabolic splines with additional knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019),  205–219  mathnet  elib
2018
3. Yu. N. Subbotin, S. I. Novikov, V. T. Shevaldin, “Extremal functional interpolation and splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  200–225  mathnet  elib
4. V. T. Shevaldin, “On integral Lebesgue constants of local splines with uniform knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:2 (2018),  290–297  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S158–S165  isi  scopus
2017
5. V. T. Shevaldin, O. Ya. Shevaldina, “The Lebesgue constant of local cubic splines with equally-spaced knots”, Sib. Zh. Vychisl. Mat., 20:4 (2017),  445–451  mathnet  elib; Num. Anal. Appl., 10:4 (2017), 362–367  isi  scopus
6. V. T. Shevaldin, “Uniform Lebesgue constants of local spline approximation”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  292–299  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 196–202  isi
7. Valerii T. Shevaldin, “Calibration relations for analogues of the basis splines with uniform nodes”, Ural Math. J., 3:1 (2017),  76–80  mathnet  mathscinet  elib
2016
8. V. T. Shevaldin, “A method for the construction of analogs of wavelets by means of trigonometric $B$-splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:4 (2016),  320–327  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 165–171  isi  scopus
9. E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of third-order local trigonometric splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  245–254  mathnet  mathscinet  elib
2015
10. V. T. Shevaldin, O. Ya. Shevaldina, “Upper bounds for uniform Lebesgue constants of interpolational periodic sourcewise representable splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  309–315  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 175–181  isi
11. E. V. Strelkova, V. T. Shevaldin, “On uniform Lebesgue constants of local exponential splines with equidistant knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  261–272  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 206–217  isi
12. E. G. Pytkeev, V. T. Shevaldin, “Two-scale relations for $B$-$\mathcal L$-splines with uniform knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015),  234–243  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 186–195  isi
13. E. V. Strelkova, V. T. Shevaldin, “On Lebesgue constants of local parabolic splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015),  213–219  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 192–198  isi  scopus
2014
14. E. V. Strelkova, V. T. Shevaldin, “Local exponential splines with arbitrary knots”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014),  258–263  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 189–194  isi  scopus
2012
15. Yu. S. Volkov, V. T. Shevaldin, “Shape preserving conditions for quadratic spline interpolation in the sense of Subbotin and Marsden”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  145–152  mathnet  elib
16. Yu. S. Volkov, E. G. Pytkeev, V. T. Shevaldin, “Orders of approximation by local exponential splines”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:4 (2012),  135–144  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 175–184  isi  scopus
2011
17. Yu. S. Volkov, E. V. Strelkova, V. T. Shevaldin, “Local approximation by splines with displacement of nodes”, Mat. Tr., 14:2 (2011),  73–82  mathnet  mathscinet  elib; Siberian Adv. Math., 23:1 (2013), 69–75
18. V. T. Shevaldin, “Two-scale relations for analogs of basis splines of small degrees”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  319–323  mathnet  elib
19. E. V. Strelkova, V. T. Shevaldin, “Form preservation under approximation by local exponential splines of an arbitrary order”, Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011),  291–299  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 171–179  isi  scopus
2010
20. Yu. S. Volkov, V. V. Bogdanov, V. L. Miroshnichenko, V. T. Shevaldin, “Shape-Preserving Interpolation by Cubic Splines”, Mat. Zametki, 88:6 (2010),  836–844  mathnet  mathscinet; Math. Notes, 88:6 (2010), 798–805  isi  scopus
21. E. V. Strelkova, V. T. Shevaldin, “Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  272–280  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S133–S141  isi  scopus
22. P. G. Zhdanov, V. T. Shevaldin, “Approximation by third-order local $\mathcal L$-splines with uniform nodes”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010),  156–165  mathnet  elib
2006
23. V. T. Shevaldin, “Approximation by local $L$-splines corresponding to a linear differential operator of the second order”, Trudy Inst. Mat. i Mekh. UrO RAN, 12:2 (2006),  195–213  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 255, suppl. 2 (2006), S178–S197  scopus
2005
24. K. V. Kostousov, V. T. Shevaldin, “Approximation by local trigonometric splines”, Mat. Zametki, 77:3 (2005),  354–363  mathnet  mathscinet  zmath  elib; Math. Notes, 77:3 (2005), 326–334  isi  scopus
25. V. T. Shevaldin, “Approximation by local parabolic splines with arbitrary knots”, Sib. Zh. Vychisl. Mat., 8:1 (2005),  77–88  mathnet  zmath
2001
26. V. T. Shevaldin, “The Jackson–Stechkin inequality in the space $C(\mathbb T)$ with trigonometric continuity modulus annihilating the first harmonics”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  231–237  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 1, S206–S213
27. S. I. Novikov, V. T. Shevaldin, “A problem of extremal interpolation for multivariate functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:1 (2001),  144–159  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 1, S150–S166
1999
28. A. G. Babenko, N. I. Chernykh, V. T. Shevaldin, “The Jackson–Stechkin inequality in $L^2$ with a trigonometric modulus of continuity”, Mat. Zametki, 65:6 (1999),  928–932  mathnet  mathscinet  zmath; Math. Notes, 65:6 (1999), 777–781  isi
1998
29. V. T. Shevaldin, “Extremal interpolation in the mean with overlapping averaging intervals and $L$-splines”, Izv. RAN. Ser. Mat., 62:4 (1998),  201–224  mathnet  mathscinet  zmath; Izv. Math., 62:4 (1998), 833–856  isi  scopus
1994
30. V. T. Shevaldin, “Lower estimates of the widths of the classes of functions defined by a modulus of continuity”, Izv. RAN. Ser. Mat., 58:5 (1994),  172–188  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 45:2 (1995), 399–415  isi
1993
31. V. T. Shevaldin, “Lower bounds for the widths of classes of periodic functions with a bounded fractional derivative”, Mat. Zametki, 53:2 (1993),  145–151  mathnet  mathscinet  zmath; Math. Notes, 53:2 (1993), 218–222  isi
1992
32. V. T. Shevaldin, “Widths of classes of convolutions with Poisson kernel”, Mat. Zametki, 51:6 (1992),  126–136  mathnet  mathscinet  zmath; Math. Notes, 51:6 (1992), 611–617  isi
33. V. T. Shevaldin, “Lower estimations of widths some classes of periodic functions”, Trudy Mat. Inst. Steklov., 198 (1992),  242–267  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 198 (1994), 233–255
1989
34. V. T. Shevaldin, “Lower bounds on widths of classes of sourcewise representable functions”, Trudy Mat. Inst. Steklov., 189 (1989),  185–200  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 189 (1990), 217–234
1983
35. V. T. Shevaldin, “$\mathscr L$-Splines and widths”, Mat. Zametki, 33:5 (1983),  735–744  mathnet  mathscinet  zmath; Math. Notes, 33:5 (1983), 378–383  isi
36. V. T. Shevaldin, “Some problems of extremal interpolation in the mean for linear differential operators”, Trudy Mat. Inst. Steklov., 164 (1983),  203–240  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 164 (1985), 233–273
1982
37. V. T. Shevaldin, “Some problems of extremal interpolation in the mean”, Dokl. Akad. Nauk SSSR, 267:4 (1982),  803–805  mathnet  mathscinet  zmath
1981
38. V. T. Shevaldin, “A problem of extremal interpolation”, Mat. Zametki, 29:4 (1981),  603–622  mathnet  mathscinet  zmath; Math. Notes, 29:4 (1981), 310–320  isi
1980
39. V. T. Shevaldin, “Extremal interpolation with least norm of linear differential operator”, Mat. Zametki, 27:5 (1980),  721–740  mathnet  mathscinet  zmath; Math. Notes, 27:5 (1980), 344–354  isi

2007
40. V. V. Arestov, V. I. Berdyshev, O. V. Besov, N. N. Krasovskii, S. M. Nikol'skii, S. I. Novikov, Yu. S. Osipov, S. A. Telyakovskii, N. I. Chernykh, V. T. Shevaldin, “Yurii Nikolaevich Subbotin (on his 70th birthday)”, Uspekhi Mat. Nauk, 62:2(374) (2007),  187–190  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 62:2 (2007), 403–406  isi

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020