Qualitative theory of differential equations and dynamical systems, classical mechanics, dynamics of a rigid body interacting with a medium, differential geometry and topology, differential and topological diagnostics, fractal theory, mathematical logic and informatics
Biography
Maxim V. Shamolin was born in October 22, 1966 in Noginsk (Bogorodsk) Town, Moscow Region, RSFSR, USSR.
Principal place of work:
Laboratory of Navigation and Control, Research Institute of Mechanics, Lomonosov Moscow State University, 1 Michurinskii Ave., 119192, Moscow, Russian Federation: from 1992 (researcher, senior scientist, leading scientist).
Another job:
Department of Mechanics and Mathematics of Lomonosov Moscow State University: from 1994 (senior Lecturer, Full Professor); Department of Mathematics of Moscow Pedagogical State University: from 2009 (Full Professor).
Education:
Student of Department of Mechanics and Mathematics of Lomonosov Moscow State University (1983–1988);
Post Graduate Student of Department of Mechanics and Mathematics of Lomonosov Moscow State University (1988–1991).
Candidate Dissertation (Physical and Mathematical Sciences, i.e., PHD Dissertation) («Qualitative Analysis of a Model Problem of a Rigid Body Motion in a Medium in a Jet Flow», Department of Mechanics and Mathematics of Lomonosov Moscow State University).
Doctor Dissertation (Physical and Mathematical Sciences, i.e., DSCI Dissertation) («Methods of Analysis of Classes of Nonconservative Systems in Dynamics of a Rigid Body Interacting with a Medium», Department of Mechanics and Mathematics of Lomonosov Moscow State University).
Medal of Leonard Euler (for Young Mathematicians, Gesellschaft für Angewandte Mathematik und Mechanik, 1995).
Prime Premium for Young Scientists of Lomonosov Moscow State University (1996).
Winner of Grants of President of Russian Federation for Young Full Doctors (2005, 2006).
Commemorative Medal "300th Anniversary to Mikhail Vasilevich Lomonosov" (2011).
Order Labore et Scientia (European scientific and industrial consortium, 2013).
Medal "Eurorean scientific and industrial consortium – Wilhelm Leibnitz" (2014).
Gold Medal in Honour of V. I. Vernadskii (2014).
Order Alexander The Great (European scientific and industrial consortium, 2015).
Member to editorial staffs of the journals «Fundamental and Applied Mathematics» (Lomonosov Moscow State University), «Applied Mathematics and Mathematical Physics» (Moscow Financial-Legal Academy), «Research Journal of International Studies», and also series «Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory» (VINITI RAS).
From 1999 on the Department of Mechanics and Mathematics of Lomonosov Moscow State University under research advising of D. V. Georgievskii, V. V. Trofimov, and M. V. Shamolin the scientific Workshop "Actual Problems in Geometry and Mechanics" had been worked. From 2003 that Workshop had been named as the Workshop in Honour of Professor V. V. Trofimov under research advising of S. A. Agafonov, D. V. Georgievskii, and M. V. Shamolin.
Member of Moscow Mathematical Society (MMS), Gesellschaft für Angewandte Mathematik und Mechanik (GAMM), European Society in Mechanics (EUROMECH), Honorary Member of American Biographical Institute (ABI), Member of the National Committee on Theoretical and Applied Mechanics (since August 2019).
Corresponding Member of Russian Academy of Natural History (2012).
Academician of Russian Academy of Natural History (2014).
Prepared 1 doctor of sciences and 6 candidates.
Main publications:
M. V. Shamolin, “Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part 1”, J. Math. Sci. (N. Y.), 233:2 (2018), 173–299
M. V. Shamolin, “Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part 2”, J. Math. Sci. (N. Y.), 233:3 (2018), 301–397
M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, Journal of Mathematical Sciences, 230:2 (2018), 185–353
M. V. Shamolin, “Variety of Integrable Cases in Dynamics of Low- and Multi-Dimensional Rigid Bodies in Nonconservative Force Fields”, Journal of Mathematical Sciences, 204:4 (2015), 379–530
V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530
M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications”, J. Math. Sci., 162:6 (2009), 741–908
M. V. Shamolin, “Integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei”, Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina-2020, Materialy mezhdunarodnoi konferentsii (Voronezh, 27–30 yanvarya 2020 g.), eds. V. A. Kostin, IPTs "Nauchnaya kniga, Voronezh, 2020, 313–318https://vzms.kmm-vsu.ru/files/vzms2020.pdf
2.
M. V. Shamolin, “Spatial motion of a pendulum in a jet flow: qualitative aspects and integrability”, 91st Annual Meeting of the International Association of Applied Mathematics and Mechanics, Book of Abstracts (Kassel, Germany, March 16–20, 2020), Universität Kassel, Kassel, 2020, 94–95https://hessenbox.uni-kassel.de/getlink/fiTZCeQHUmpqnnXyw37iLpRA/Bookofabstracts_2020.pdf
3.
M. V. Shamolin, “New Cases of Integrable Odd-Order Systems with Dissipation”, Doklady Mathematics, 101:2 (2020), 158–164
4.
D. V. Georgievskii, M. V. Shamolin, “Zasedaniya seminara mekhaniko-matematicheskogo fakulteta MGU im. M. V. Lomonosova «Aktualnye problemy geometrii i mekhaniki» im. prof. V. V. Trofimova pod rukovodstvom S. A. Agafonova, D. V. Georgievskogo i M. V. Shamolina”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, Moskva, 2020, 3–11
5.
N. L. Polyakov, M. V. Shamolin, “Teoremy o reduktsii v teorii kollektivnogo vybora”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, Moskva, 2020, 46–51
6.
M. V. Shamolin, “Nekotorye integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, Moskva, 2020, 52–69
7.
M. V. Shamolin, “Sistemy s dissipatsiei: otnositelnaya grubost, negrubost razlichnykh stepenei i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, Moskva, 2020, 70–82
8.
M. V. Shamolin, “Dvizhenie tverdogo tela s perednim konusom v soprotivlyayuscheisya srede: kachestvennyi analiz i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, Moskva, 2020, 83–108
9.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Tezisy zasedaniya seminara «Aktualnye problemy geometrii i mekhaniki», Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, Moskva, 2020, 3–4
10.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Tezisy zasedaniya seminara «Aktualnye problemy geometrii i mekhaniki», Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, Moskva, 2020, 6–8
11.
M. V. Shamolin, “Pervye integraly sistem nechetnogo poryadka s dissipatsiei”, Ustoichivost i kolebaniya nelineinykh sistem upravleniya, Materialy XV Mezhdunarodnoi konferentsii (Moskva, 3–5 iyunya 2020 g.), eds. V. N. Tkhai, IPU RAN, Moskva, 2020, 506–508https://stab20.ipu.ru/ru/prcdngs
12.
M. V. Shamolin, “Integrable Dissipative Dynamical Systems with Three and Four Degrees of Freedom”, Developments and Novel Approaches in Nonlinear Solid Body Mechanics, Advanced Structured Materials, 130, eds. B. E. Abali and I. Giorgio, Springer Nature Switzerland AG, Switzerland, 2020, 77–91
13.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s konechnym chislom stepenei svobody s dissipatsiei”, Teoriya upravleniya i matematicheskoe modelirovanie, Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, posvyaschennoi pamyati professora N. V. Azbeleva i professora E. L. Tonkova (Izhevsk, Rossiya, 15–19 iyunya 2020 g.), Izdatelskii tsentr «Udmurtskii universitet», Izhevsk, 2020, 143–146https://yadi.sk/i/LTf_ryvVAPqZSg
14.
M. V. Shamolin, “Integriruemye sistemy vysokogo poryadka s dissipatsiei”, Sovremennye metody teorii kraevykh zadach, Materialy mezhd. konf. Voronezhskaya vesennyaya matem. shk. «Pontryaginskie chteniya-XXXI» (Voronezh, 3–9 maya 2020 g.), Izdatelskii dom VGU, Voronezh, 2020, 246–247https://vvmsh.math-vsu.ru/files/vvmsh2020.pdf
15.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokladov (Suzdal, 3–7 iyulya 2020 g.), Izd-vo VlGU, Vladimir, 2020, 124–125https://cloud.mail.ru/public/Q3T1/3yCyVPkYR
16.
M. V. Shamolin, “Integrable Homogeneous Dissipative Dynamical Systems of an Arbitrary Odd Order”, Journal of Mathematical Sciences, 251:5 (2020), 760–771
17.
M. V. Shamolin, “New Cases of Homogeneous Integrable Systems with Dissipation on Tangent Bundles of Two-Dimensional Manifolds”, Doklady Mathematics, 102:2 (2020), 443–448
18.
M. V. Shamolin, “Novye sluchai odnorodnykh integriruemykh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Doklady RAN. Matematika, informatika, protsessy upravleniya, 495:1 (2020), 84–90
19.
M. V. Shamolin, “Systems with Dynamical Symmetries: Qualitative Analysis, Integrability, and Applications”, XLVIII International Summer School Conference «Advanced Problems in Mechanics» (APM Live 2020), Abstracts (St. Petersburg, Russia, November 09–13, 2020), II, Polytech–IPME RAS, St. Petersburg, 2020, 28http://apm-conf.spb.ru/images/book2_of_abstracts_2020_small.pdf
20.
M. V. Shamolin, “Classes of integrable systems with dissipation on the tangent bundles of four-dimensional manifolds”, International Conference «Topological Methods in Dynamics and Related Topics. Shilnikov Workshop», Book of Abstracts (Nizhny Novgorod, Russia, 12–13 December, 2020), Higher School of Economics, Nizhny Novgorod, 2020, 70https://nnov.hse.ru/mirror/pubs/share/424699101.pdf
21.
M. V. Shamolin, “Families of Portraits of Some Pendulum-Like Systems in Dynamics”, Journal of Applied and Industrial Mathematics, 14:4 (2020), 769–778
M. V. Shamolin, “Zadachi differentsialnoi i topologicheskoi diagnostiki. Chast 4. Zadacha diagnostirovaniya (sluchai tochnykh traektornykh izmerenii)”, Vestnik SamU. Estestvennonauchnaya seriya, 26:1 (2020), 52–68
2019
24.
M. V. Shamolin, “Integrable Dissipative Dynamical Systems”, International Conference “Topological Methods in Dynamics and Related Topics”, Book of Abstracts (Nizhny Novgorod, January 3–6, 2019), Higher School of Economics, Nizhny Novgorod, 2019, 50–51https://nnov.hse.ru/mirror/pubs/share/direct/231100463
25.
M. V. Shamolin, “Integriruemye dissipativnye sistemy so mnogim chislom stepenei svobody”, Sovremennye metody teorii funktsii i smezhnye problemy, Mat. Mezhd. konf. Voronezhskaya zimnyaya matematicheskaya shkola (Voronezh, 28 yanvarya – 2 fevralya 2019 g.), Izdatelskii dom VGU, Voronezh, 2019, 293–294https://vzmsh.math-vsu.ru/files/vzmsh2019.pdf
26.
M. V. Shamolin, “Family of Phase Portraits in the Spatial Dynamics of a Rigid Body Interacting with a Resisting Medium”, Journal of Applied and Industrial Mathematics, 13:2 (2019), 327–339
2020
27.
N. L. Polyakov, M. V. Shamolin, “On Dynamic Aggregation Systems”, Journal of Mathematical Sciences, 244:2 (2020), 278–293
28.
M. V. Shamolin, “Integrable Dynamical Systems with Dissipation on Tangent Bundles of 2D and 3D Manifolds”, Journal of Mathematical Sciences, 244:2 (2020), 335–355
2019
29.
M. V. Shamolin, “Integrable Third and Fifth Order Dynamical Systems with Dissipation”, Journal of Mathematical Sciences, 239:3 (2019), 412–423 (cited: 2)
30.
M. V. Shamolin, “Relative Structural Stability and Instability of Different Degrees in Systems with Dissipation”, Journal of Mathematical Sciences, 239:3 (2019), 424–435
31.
M. V. Shamolin, “New Cases of Integrable Fifth-Order Systems with Dissipation”, Doklady Physics, 64:4 (2019), 189–192
32.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei”, Sovremennye metody teorii kraevykh zadach, Materialy mezhd. konf. Voronezhskaya vesennyaya matem. shk. «Pontryaginskie chteniya-XXX» (Voronezh, 3–9 maya 2019 g.), Izdatelskii dom VGU, Voronezh, 2019, 314–315https://vvmsh.math-vsu.ru/files/vvmsh2019.pdf
33.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s dissipatsiei so mnogim chislom stepenei svobody”, Sovremennye problemy matematiki i mekhaniki, Materialy mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu akademika RAN V. A. Sadovnichego, 1, MAKS Press, Moskva, 2019, 387–390http://sadovnichii80.msu.ru/volum1.pdf
34.
M. V. Shamolin, E. P. Krugova, “Diagnostic problem for a model of a gyrostabilized platform”, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences ICMMAS-17, St. Petersburg Polytechnic University, July 24-28, 2017, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 160, VINITI, Moscow, 2019, 137–141
35.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy pyatogo poryadka s dissipatsiei”, XIX Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam (Eruginskie chteniya-2019), Materialy (Mogilev, 14–17 maya 2019 g.), 1, eds. A. K. Demenchuk, S. G. Krasovskii, E. K. Makarov, Institut matematiki NAN Belarusi, Minsk, 2019, 100–101http://erugin.bru.by/wp-content/uploads/2019/06/0_sbornik_1.pdf
36.
M. V. Shamolin, “Transcendental First Integrals of Dissipative Systems with Many Degrees of Freedom”, APM 2019, XLVII International Conference "Advanced Problems in Mechanics, Book of Abstracts (St. Petersburg, June 24–29, 2019), Polytech–IPME RAS, St. Petersburg, 2019, 106–107http://apm-conf.spb.ru/images/apm2019_abstracts-small.pdf
37.
M. V. Shamolin, Integriruemye dinamicheskie sistemy s dissipatsiei, v. 1, Tverdoe telo v nekonservativnom pole, LENAND, Moskva, 2019 , 456 pp.
38.
M. V. Shamolin, “Mathematical Modeling of Spatial Action of a Medium on a Body of Conical Form”, 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), Program and Abstracts Book (Valencia, Spane, July 15–19, 2019), Valencia, 2019, 195https://iciam2019.org/images/site/news/ICIAM2019_PROGRAM_ABSTRACTS_BOOK.pdf
39.
M. V. Shamolin, “Dinamicheskie sistemy s dissipatsiei: analiz i integriruemost”, Matematika v prilozheniyakh. Mezhd. konf. v chest 90-letiya S. K. Godunova, Tez. dokl. (Novosibirsk, 4–10 avgusta 2019 g.), eds. G. V. Demidenko, In-t matematiki SO RAN, Novosibirsk, 2019, 235http://www.math.nsc.ru/conference/gsk/90/Book-Abstracts.pdf
40.
M. V. Shamolin, “New Cases of Integrable Seventh-Order Systems with Dissipation”, Doklady Physics, 64:8 (2019), 330–334 (cited: 1) (cited: 1)
41.
M. V. Shamolin, “Integriruemye mekhanicheskie sistemy s peremennoi dissipatsiei”, XII Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, Sbornik trudov v 4-kh tomakh. T. 1: Obschaya i prikladnaya mekhanika (Ufa, 19–24 avgusta 2019 g.), RITs BashGU, Ufa, 2019, 153–154http://ruscongrmech2019.bashedu.ru/ru/trudy-sezda
42.
M. V. Shamolin, “Zadachi differentsialnoi i topologicheskoi diagnostiki. Chast 1. Uravneniya dvizheniya i klassifikatsiya neispravnostei”, Vestnik SamU. Estestvennonauchnaya seriya, 25:1 (2019), 32–43 (cited: 2)
M. V. Shamolin, “Integrable Dissipative Dynamical Systems: Approach and Applications”, 2nd International Conference on Mathematical Modelling in Applied Sciences (ICMMAS 2019), Book of Abstracts (Belgorod, Russia, August 20–24, 2019), eds. Amar Debbouche, BSU Belgorod-Russia & Alpha-Publishing, Belgorod, 2019, 209–210http://icmmas19.alpha-publishing.net/abstract-book
45.
M. V. Shamolin, “Nekotorye integriruemye dinamicheskie sistemy nechetnogo poryadka s dissipatsiei”, XXX Krymskaya Osennyaya Matematicheskaya Shkola-simpozium po spektralnym evolyutsionnym zadacham (KROMSh-2019), Sbornik materialov mezhdunarodnoi konferentsii (Laspi–Batiliman, 17–29 sentyabrya 2019 g.), eds. V. I. Voititskii, Poliprint, Simferopol, 2019, 131–134http://www.kromsh.info
46.
M. V. Shamolin, “Avtokolebaniya pri prostranstvennom modelirovanii vozdeistviya sredy na tverdoe telo s perednei chastyu v vide konusa”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov XII mezhdunarodnoi konferentsii PMTUKT-2019 (Voronezh, 25–28 sentyabrya 2019 g.), eds. A. P. Zhabko, I. L. Bataronov, D. S. Saiko, VGUIT, Voronezh, 2019, 343–345http://old.vsuet.ru/science/conference2019/mat_25-28_09-2019.pdf
47.
M. V. Shamolin, “Modelirovanie prostranstvennogo dvizheniya tverdogo tela v srede”, Mezhdunarodnaya konferentsiya «Analiticheskie i chislennye metody resheniya zadach gidrodinamiki, matematicheskoi fiziki i biologii», posvyaschennnaya 100-letiyu K. I. Babenko, Tezisy dokladov (g. Puschino, 26–29 avgusta 2019 g.), IPM im. M. V. Keldysha RAN, Moskva, 2019, 134–135https://yadi.sk/i/mblN_GPicmgeDQ
48.
M. V. Shamolin, “Dissipative Dynamical Systems: Backgrounds, Methods, and Applications”, International Conference "Modern Problems of Mathematics and Mechanics devoted to 60th Anniversary of Institute of Mathematics and Mechanics, Proceedings (Baku, Azerbaijan, October 23–25, 2019), ANAS, Baku, 2019, 463–465https://imm60.imm.az/abstract-book/
49.
M. V. Shamolin, “Integrable Systems with Many Degrees of Freedom and with Dissipation”, Moscow University Mechanics Bulletin, 74:6 (2019), 137–146
2020
50.
M. V. Shamolin, “Integrable Seventh and Ninth Order Dynamic Systems with Dissipation”, Journal of Mathematical Sciences, 244:4 (2020), 686–702 (cited: 1)
2019
51.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei so mnogimi stepenyami svobody”, Differentsialnye uravneniya i ikh prilozheniya v matematicheskom modelirovanii, Materialy XIV Mezhdunarodnoi nauchnoi konferentsii (Saransk, 9–12 iyulya 2019 g.), SVMO, Saransk, 2019, 160–172http://conf.svmo.ru/files/2019/papers/paper42.pdf
52.
M. V. Shamolin, “Transcendental First Integrals of Dynamical Systems”, Topological Methods in Dynamics and Related Topics. Shilnikov Workshop, International Conference, Book of Abstracts (Nizhny Novgorod, December 9–13, 2019), HSE and Lobachevsky State University, Nizhny Novgorod, 2019, 114–115https://nnov.hse.ru/mirror/pubs/share/322612028
53.
M. V. Shamolin, “Integrable dissipative dynamical systems: backgrounds, methods, and applications”, 15th Conference on Dynamical Systems: Theory and Applications (DSTA 2019), Abstracts (Lodz, December 2–5, 2019), eds. J. Awrejcewicz, M. Kazmierczak, J. Mrozowski, P. Olejnik, Lodz University of Technology, Lodz, 2019, 363
54.
M. V. Shamolin, “New Cases of Integrable Ninth-Order Systems with Dissipation”, Doklady Physics, 64:12 (2019), 487–493 (cited: 1) (cited: 1)
55.
M. V. Shamolin, “Zadachi differentsialnoi i topologicheskoi diagnostiki. Chast 2. Zadacha differentsialnoi diagnostiki”, Vestnik SamU. Estestvennonauchnaya seriya, 25:3 (2019), 22–31 (cited: 1)
56.
M. V. Shamolin, “Zadachi differentsialnoi i topologicheskoi diagnostiki. Chast 3. Zadacha kontrolya”, Vestnik SamU. Estestvennonauchnaya seriya, 25:4 (2019), 36–47
57.
M. V. Shamolin, “Integriruemye sistemy pyatogo poryadka s dissipatsiei”, Lomonosovskie chteniya, Tez. dokl. nauchn. konf. Sektsiya mekhaniki (Moskva, 15–25 aprelya 2019 g.), MGU imeni M. V. Lomonosova, Moskva, 2019, 212–213http://www.imec.msu.ru/content/lom_reading/2019/lomonosov_2019_mech.pdf
2018
58.
M. V. Shamolin, “The case of integrable systems with dissipation on the tangent bundle of a multidimensional sphere”, Journal of Mathematical Sciences, 228:6 (2018), 723–730 (cited: 4)
59.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s dissipatsiei”, Materialy mezhdunarodnoi konferentsii “Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina–2018”, eds. V. A. Kostin, IPTs “Nauchnaya kniga”, Voronezh, 2018, 361–364https://vzms2018.ru/digest/
60.
M. V. Shamolin, “Negladkie pervye integraly v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Vosmye Polyakhovskie chteniya, Tez. dokl. Mezhd. nauchn. konf. po mekhanike (Sankt-Peterburg, 30 yanvarya – 2 fevralya 2018 g.), SPbGU, Sankt-Peterburg, 2018, 54–55https://events.spbu.ru/eventsContent/events/2018/polyakhov/sbornik.pdf
61.
M. V. Shamolin, “New Cases of Integrable Systems with Dissipation on Tangent Bundles of Four-Dimensional Manifolds”, Doklady Physics, 63:3 (2018), 132–137 (cited: 2) (cited: 4)
62.
M. V. Shamolin, “Simulation of the Spatial Action of a Medium on a Body of Conical Form”, Journal of Applied and Industrial Mathematics, 12:2 (2018), 347–354
63.
M. V. Shamolin, “Mathematical Modeling of the Action of a Medium on a Conical Body”, 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) (Munich, Germany, March 19–23, 2018), Book of Abstracts, Technische Universitat Munchen, Munchen, 2018, 82–83http://jahrestagung.gamm-ev.de/images/2018/book_of_abstracts.pdf
2020
64.
M. V. Shamolin, “Integrable Systems with Dissipation on the Tangent Bundles of 2- and 3-Dimensional Spheres”, Journal of Mathematical Sciences, 245:4 (2020), 498–507
2018
65.
M. V. Shamolin, “Lokalnaya razreshimost nekotoroi odnofaznoi zadachi so svobodnoi granitsei”, Sovremennye metody teorii kraevykh zadach, Mat. mezhd. konf., posvyasch. 90-letiyu V. A. Ilina (Moskva, 2–6 maya 2018 g.), Pontryaginskie chteniya – XXIX, MAKS-Press, Moskva, 2018, 239–240https://ilin90.math-vsu.ru/
66.
M. V. Shamolin, “A New Case of an Integrable System with Dissipation on the Tangent Bundle of a Multidimensional Sphere”, Moscow University Mechanics Bulletin, 73:3 (2018), 51–59
67.
M. V. Shamolin, “Sluchai integriruemosti sistem s dissipatsiei na kasatelnom rassloenii k mnogomernomu mnogoobraziyu”, XVIII Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam (Eruginskie chteniya-2018), Materialy (Grodno, 15–18 maya 2018 g.), 1, eds. A. K. Demenchuk, S. G. Krasovskii, E. K. Makarov, In-t matematiki NAN Belarusi, Minsk, 2018, 99–101
68.
M. V. Shamolin, “Pervye integraly sistem s tremya stepenyami svobody s dissipatsiei”, Ustoichivost i kolebaniya nelineinykh sistem upravleniya, Materialy XIV Mezhdunarodnoi nauchnoi konferentsii (Moskva, 30 maya – 1 iyunya 2018 g.), eds. V. N. Tkhai, IPU RAN, Moskva, 2018, 482–485http://stab18.ipu.ru/ru
69.
M. V. Shamolin, “Transcendental first integrals of some classes of dynamical systems”, Proc. Inst. Math. Mech., National Academy of Sciences of Azerbaijan, 44:1 (2018), 19–35http://www.proc.imm.az/volumes/44-1/44-01-02.pdf
2020
70.
D. V. Georgievsky, M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov”, Journal of Mathematical Sciences, 250:6 (2020), 859–880
71.
M. V. Shamolin, “Examples of Integrable Systems with Dissipation on the Tangent Bundles of Multidimensional Spheres”, Journal of Mathematical Sciences, 250:6 (2020), 932–941
72.
M. V. Shamolin, “Solution of the Diagnostic Problem in the Cases of Precise and Inaccurate Trajectory Measurements”, Journal of Mathematical Sciences, 250:6 (2020), 942–963
73.
M. V. Shamolin, “Examples of Integrable Systems with Dissipation on the Tangent Bundles of Three-Dimensional Manifolds”, Journal of Mathematical Sciences, 250:6 (2020), 964–972
74.
M. V. Shamolin, “Examples of Integrable Systems with Dissipation on the Tangent Bundles of Four-Dimensional Manifolds”, Journal of Mathematical Sciences, 250:6 (2020), 973–983
75.
M. V. Shamolin, “Problems of Qualitative Analysis in the Spatial Dynamics of Rigid Bodies Interacting with Media”, Journal of Mathematical Sciences, 250:6 (2020), 984–996
76.
M. V. Shamolin, “Mechanical and topological analogies in multidimensional dynamics”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, "Urgent problems of geometry and mechanics named after V. V. Trofimov, Journal of Mathematical Sciences, 250:6 (2020), 859–860
77.
M. V. Shamolin, “A survey of integrable examples in the multidimensional dynamics of nonconservative systems”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, "Urgent problems of geometry and mechanics named after V. V. Trofimov, Journal of Mathematical Sciences, 250:6 (2020), 862
78.
M. V. Shamolin, “Multiparameter systems of pendulum type”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, "Urgent problems of geometry and mechanics named after V. V. Trofimov, Journal of Mathematical Sciences, 250:6 (2020), 863–865
79.
M. V. Shamolin, “On the integrability of dynamical systems in elementary functions”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, "Urgent problems of geometry and mechanics named after V. V. Trofimov, Journal of Mathematical Sciences, 250:6 (2020), 866–868
80.
M. V. Shamolin, “New examples of integrable systems with dissipation on tangent bundles of two-dimensional and three-dimensional sphreres”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, "Urgent problems of geometry and mechanics named after V. V. Trofimov, Journal of Mathematical Sciences, 250:6 (2020), 869–873
81.
M. V. Shamolin, “New examples of integrable systems with variable dissipation on the tangent bundle of the multidimensional sphere”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, "Urgent problems of geometry and mechanics named after V. V. Trofimov, Journal of Mathematical Sciences, 250:6 (2020), 877–879
2018
82.
M. V. Shamolin, “First Integrals of Systems with Three Degrees of Freedom and Dissipation”, 2018 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiys Conference) (Moscow, 30 May – 1 June 2018), IEEE, 2018, 1–4https://ieeexplore.ieee.org/abstract/document/8408400/
83.
M. V. Shamolin, “Non-Smooth First Integrals of Dissipative Systems with Four Degrees of Freedom”, APM 2018, Proceedings of XLVI Summer School-Conf. "Advanced Problems in Mechanics (St. Petersburg, June 25–30, 2018), Polytech-IPME RAS, St. Petersburg, 2018, 251–260http://www.ipme.ru/ipme/conf/APM2018/2018-PDF/251-260.pdf
84.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokladov (Suzdal, 6–11 iyulya 2018 g.), OOO “Arkaim”, Vladimir, 2018, 221–222
85.
M. V. Shamolin, “Integrable Dissipative Dynamic Systems: Theory and Applications”, International Conference “Mathematical Analysis, Differential Equations and Applications” (MADEA-8), Abstracts (Issyk-Kul, Kyrgyz Rep., June 17–23, 2018), KTMU, Bishkek, 2018, 114–115
86.
M. V. Shamolin, “Integrable Systems with Dissipation and Two and Three Degrees of Freedom”, Journal of Mathematical Sciences, 235:2 (2018), 220–242 (cited: 3)
87.
M. V. Shamolin, “Integrable Dynamic Systems with Dissipation and Finitely Many Degrees of Freedom”, Journal of Mathematical Sciences, 235:3 (2018), 334–359 (cited: 2)
88.
S. K. Godunov, M. V. Shamolin, S. V. Fortova, V. V. Shepelev, “Chislennoe issledovanie raznostnykh modelei gazovoi dinamiki s udarnymi volnami”, XXII Vserossiiskaya konferentsiya "Teoreticheskie osnovy i konstruirovaniya chislennykh algoritmov resheniya zadach matematicheskoi fiziki, posvyaschennaya pamyati K. I. Babenko, Tezisy dokladov (Dyurso, 3–8 sentyabrya 2018 g.), IPM im. M. V. Keldysha, Moskva, 2018, 40–41http://www.kiam.ru/babenko/proceedings/Babenko_2018_issn.pdf
89.
M. V. Shamolin, “Modelirovanie prostranstvennogo tormozheniya tela v soprotivlyayuscheisya srede”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov XI mezhdunarodnoi konferentsii "PMTUKT-2018 (Voronezh, 18–24 sentyabrya 2018 g.), eds. A. P. Zhabko, I. L. Bataronov, V. V. Provotorov, Nauchnaya kniga, Voronezh, 2018, 300–303
90.
M. V. Shamolin, “New Cases of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Manifold”, Doklady Physics, 63:10 (2018), 424–429 (cited: 4) (cited: 5)
91.
M. V. Shamolin, “Sluchai integriruemykh sistem s dissipatsiei so mnogimi stepenyami svobody”, Mezhd. konf. "Dinamicheskie sistemy v nauke i tekhnologiyakh (DSST-2018), Tezisy dokladov (Alushta, 17–21 sentyabrya 2018 g.), eds. O. V. Anashkin, IP Kornienko A.A., Simferopol, 2018, 56–58http://dsst.su/theses
92.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy so mnogim chislom stepenei svobody s dissipatsiei”, "XXIX Krymskaya Osennyaya Matematicheskaya Shkola-simpozium po spektralnym evolyutsionnym zadacham (KROMSh-2018), Sbornik materialov mezhdunarodnoi konferentsii. Sektsii 1–3 (Laspi–Batiliman, 17–29 sentyabrya 2018 g.), Poliprint, Simferopol, 2018, 134–136http://www.kromsh.info
93.
M. V. Shamolin, “Strukturnaya ustoichivost dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela”, Dinamicheskie sistemy: ustoichivost, upravlenie, optimizatsiya, Materialy Mezhd. nauch. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya akad. E. A. Barbashina (Minsk, 24–29 sentyabrya 2018 g.), eds. F. M. Kirillova (gl. red.), BGU, Minsk, 2018, 227–229
94.
M. V. Shamolin, “Integrable Dynamical Systems with Dissipation”, Integriruemye sistemy i nelineinaya dinamika, Tezisy dokl. Mezhd. nauch. konf. (Yaroslavl, 1–5 oktyabrya 2018 g.), YarGU, Yaroslavl, 2018, 77–78https://lomonosov-msu.ru/rus/event/5122/
95.
M. V. Shamolin, “Oscillations During Rigid Body Deceleration in a Resisting Medium”, 9th Annual International Meeting of the Georgian Mechanical Union, Book of Abstracts (Kutaisi, October 11–13, 2018), Kutaisi, 2018, 42–43
96.
M. V. Shamolin, “Negladkie pervye integraly sistem s tremya stepenyami svobody s dissipatsiei”, Lomonosovskie chteniya, Tez. dokl. nauchn. konf. Sektsiya mekhaniki (Moskva, 16–27 aprelya 2018 g.), MGU imeni M. V. Lomonosova, Moskva, 2018, 195–196http://www.imec.msu.ru/content/lom_reading/2018/lomonosov_2018_mech.pdf
97.
M. V. Shamolin, Sovremennye razdely matematiki v dostupnom izlozhenii. Chast I, Lambert Academic Publishing, 2018 , 351 pp.
98.
M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 3. Zavisimost polya sil ot tenzora uglovoi skorosti”, Vestnik SamU. Estestvennonauchnaya seriya, 24:2 (2018), 33–54
99.
M. V. Shamolin, “Oscillations During Spatial Deceleration of a Rigid Body in a Resisting Medium”, International Scientific Conference “Related Problems of Continuum Mechanics”, Proceedings (Kutaisi, October 12–13, 2018), eds. M. Nikabadze and H. Matevossian, Tsereteli State University, Kutaisi, 2018, 114–121
100.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s peremennoi dissipatsiei”, Optimalnoe upravlenie i differentsialnye igry, Materialy Mezhdunarodnoi konferentsii, posvyaschennoi 110-letiyu so dnya rozhdeniya L. S. Pontryagina (Moskva, 12–14 dekabrya 2018 g.), eds. K. O. Besov, MAKS Press, Moskva, 2018, 254–257
101.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s dissipatsiei”, Sobolevskie chteniya. Mezhd. shk.-konf., posvyasch. 110-letiyu so dnya rozhd. S. L. Soboleva, Tez. dokladov (Novosibirsk, 12–16 dekabrya 2018 g.), eds. G. V. Demidenko, In-t matematiki SO RAN, Novosibirsk, 2018, 192http://www.math.nsc.ru/conference/sobolev/readings/2018/Book-Abstracts.pdf
2017
102.
M. V. Shamolin, “Novye sluchai integriruemosti sistem s dissipatsiei na kasatelnykh rassloeniyakh k dvumernym mnogoobraziyam”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Mezhd. konf. “Voronezhskaya zimnyaya matematicheskaya shkola” (Voronezh, 26 yanvarya – 1 fevralya 2017 g.), Voronezhskii gos. un-t, Izdatelskii dom VGU, Voronezh, 2017, 218–219
103.
M. V. Shamolin, “New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Multidimensional Sphere”, Doklady Physics, 62:5 (2017), 262–265 (cited: 3) (cited: 7)
2018
104.
M. V. Shamolin, “Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part 1”, J. Math. Sci. (N. Y.), 233:2 (2018), 173–299 (cited: 2)
105.
M. V. Shamolin, “Low-dimensional and multi-dimensional pendulums in nonconservative fields. Part 2”, J. Math. Sci. (N. Y.), 233:3 (2018), 301–397
106.
M. V. Shamolin, “Phase portraits of dynamical equations of motion of a rigid body in a resistive medium”, J. Math. Sci. (N. Y.), 233:3 (2018), 398–425
2019
107.
M. V. Shamolin, “New Examples of Integrable Systems with Dissipation on the Tangent Bundles of Multidimensional Spheres”, Journal of Mathematical Sciences, 236:6 (2019), 687–701
2017
108.
M. V. Shamolin, “Transtsendentnye pervye integraly dinamicheskikh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Voronezhskaya vesennyaya matem. shk. “Pontryaginskie chteniya-XXVIII”, Materialy mezhd. konf. (Voronezh, 3–9 maya 2017 g.), Sovremennye metody teorii kraevykh zadach, Izdatelskii dom VGU, Voronezh, 2017, 178
109.
M. V. Shamolin, “Integriruemye sistemy so znakoperemennoi dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, XVII Mezhd. nauchn. konf. po differents. uravn. (Eruginskie chteniya-2017), Tezisy dokladov (Minsk, 16–20 maya 2017 g.), 1, eds. V. V. Amelkin i dr., Institut matematiki NAN Belarusi, Minsk, 2017, 63–64
110.
M. V. Shamolin, “Integrable systems with dissipation on the tangent bundle of two-dimensional manifold”, Int. Sci. Conf. “Algebraic and geometric methods of analysis”, Book of abstracts (Odessa, Ukraine, May 31 – June 5, 2017), Odessa, 2017, 119–120http://www.imath.kiev.ua/~topology/conf/agma2017/agma2017_abstracts.pdf
111.
M. V. Shamolin, “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Matematicheskaya teoriya optimalnogo upravleniya, Materialy mezhd. konf., posvyasch. 90-letiyu akad. R. V. Gamkrelidze (Moskva, 1–2 iyunya 2017 g.), Matem. in-t im. V. A. Steklova RAN, Moskva, 2017, 124–127http://www.mathnet.ru:8080/PresentFiles/17508/abstract.pdf
M. V. Shamolin, “K zadache o svobodnom tormozhenii tverdogo tela v soprotivlyayuscheisya srede”, Analiticheskaya mekhanika, ustoichivost i upravlenie, Tr. XI Mezhd. Chetaevskoi konf. Sektsiya 1. Analiticheskaya mekhanika (Kazan, 13–17 iyunya 2017 g.), 1, Izd-vo KNITU-KAI, Kazan, 2017, 366–375
114.
M. V. Shamolin, “Integrable Systems With Dissipation on the Tangent Bundle of Two-Dimensional Manifold”, The Intern. Sci. Workshop “Recent Advances in Hamiltonian and Nonholonomic Dynamics”, Book of Abstracts (Dolgoprudny, Russia, June 15–18, 2017), Publishing Center “Institute of Computer Science”, Moscow–Izhevsk, 2017, 74–76
115.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, XXVIII Int. Conf. “Dynamical System Modelling and Stability Investigation”, Abstracts of Conference Reports (Kiev, Ukraine, May 24–26, 2017), Shevchenko KNU, Kiev, 2017, 71http://www.dsmsi.univ.kiev.ua/downloads/book_DSMSI-2017.pdf
116.
M. V. Shamolin, “Data preparation for execution of experiments on rigid body motion in a resisting medium”, ENOC 2017, Conference Papers (Budapest, Hungary, June 25–30, 2017), ISBN 978-963-12-9168-1, Budapest, 2017, 93–94http://www.congressline.hu/enoc2017/abstracts/48.pdf
117.
M. V. Shamolin, “Cases of integrability corresponding to the motion of a pendulum in the four-dimensional space”, APM 2017, Proceedings of XLV Summer School–Conf. “Advanced Problems in Mechanics” (St. Petersburg, Russia, June 22–27, 2017), Polytech–IPME RAS, St. Petersburg, 2017, 401–413http://www.ipme.ru/ipme/conf/APM2017/2017-PDF/399____APM2017.pdf
118.
M. V. Shamolin, “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k dvumernomu mnogoobraziyu”, Mezhdunarodnaya konferentsiya po matematicheskoi teorii upravleniya i mekhanike, Tezisy dokladov (Suzdal, 7–11 iyulya 2017 g.), OOO “Arkaim”, Vladimir, 2017, 142–143
119.
M. V. Shamolin, “New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Two-Dimensional Manifold”, Doklady Physics, 62:8 (2017), 392–396 (cited: 4) (cited: 6)
120.
M. V. Shamolin, “Integrability in terms of elementary functions of variable dissipation dynamical systems”, Int. Conf. “Mathematical Modelling in Applied Sciences”, Abstract Book (Saint-Petersburg, Russia, July 24–28, 2017), eds. Amar Debbouche, SPbPU, Saint-Petersburg, 2017, 61–62http://icmmas.alpha-publishing.net/index.php?page=abstract-book
121.
M. V. Shamolin, “Integrable System with Dissipation on Tangent Bundle of Two-Dimensional Manifold”, 8th International Conference on Differential and Functional Differential Equations (Moscow, August 13–20, 2017), Abstracts, RUDN, Moskva, 2017, 161–162http://dfde2017.mi.ras.ru/files/abstracts.pdf
122.
M. V. Shamolin, “Auto-Oscilllations During Deceleration of a Rigid Body in a Resisting Medium”, Journal of Applied and Industrial Mathematics, 11:4 (2017), 572–583 (cited: 1)
123.
M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika v chetyrekhmernom prostranstve”, Vestnik SamU. Estestvennonauchnaya seriya, 23:1 (2017), 41–58
124.
M. V. Shamolin, “Prostranstvennaya model vzaimodeistviya so sredoi tverdogo tela s perednei chastyu v vide konusa”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Cb. tr. X mezhdunar. konf. “PMTUKT-2017” (Voronezh, 18–24 sentyabrya 2017 g.), eds. I. L. Bataronov, A. P. Zhabko, V. V. Provotorov, Nauchnaya kniga, Voronezh, 2017, 367–371
125.
M. V. Shamolin, “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya i prilozheniya”, Matematika v sovremennom mire. Mezhd. konf., posvyasch. 60-letiyu In-ta matematiki im. S. L. Soboleva, Tezisy dokladov (Novosibirsk, 14–19 avg. 2017 g.), eds. G. V. Demidenko, Izd-vo In-ta matematiki, Novosibirsk, 2017, 268
126.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Sb. mater. mezhd. konf. “XXVIII Krymskaya Osennyaya Matematicheskaya Shkola-simpozium po spektralnym evolyutsionnym zadacham” (KROMSh-2017) (Laspi, 17–29 sentyabrya 2017 g.), DIAIPI, Simferopol, 2017, 79–81
127.
M. V. Shamolin, “Variable dissipation dynamical systems: integrability and analysis”, 6th International Conference on Mathematical Modeling in Physical Sciences (Pafos, Cyprus, August 28–31, 2017), CD Progr. and Submissions, Pafos, 2017, 1 p.http://www.icmsquare.net/index.php/program/submissions
128.
M. V. Shamolin, “Negladkie pervye integraly v sistemakh s dissipatsiei”, Lomonosovskie chteniya, Tez. dokl. nauchn. konf. Sektsiya mekhaniki (Moskva, 17–26 aprelya 2017 g.), MGU imeni M. V. Lomonosova, Moskva, 2017, 194–195http://www.imec.msu.ru/content/lom_reading/2017/lomonosov_2017_mech.pdf
129.
M. V. Shamolin, “New Cases of Integrable Systems with Dissipation on the Tangent Bundle of a Three-Dimensional Manifold”, Doklady Physics, 62:11 (2017), 517–521 (cited: 3) (cited: 6)
130.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na kasatelnom rassloenii dvumernogo mnogoobraziya”, Differentsialnye uravneniya i ikh prilozheniya v matematicheskom modelirovanii, Materialy XIII Mezhdunarodnoi nauchnoi konferentsii (Saransk, 12–16 iyulya 2017 g.), SVMO, Saransk, 2017, 10–21http://conf.svmo.ru/files/deamm2017/papers/paper02.pdf
131.
M. V. Shamolin, “Negladkie pervye integraly sistem s dissipatsiei v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Mezhd. nauchn. konf. “Fundamentalnye i prikladnye zadachi mekhaniki”, Tezisy dokladov (Moskva, 24–27 oktyabrya 2017 g.), Izd-vo MGTU im. N. E. Baumana, Moskva, 2017, 29–30
132.
M. V. Shamolin, “Cases of integrability corresponding to the motion of a pendulum in the three-dimensional space”, PHYSCON 2017 (Florence, Italy, July 17–19, 2017), IPACS Electronic library, 2017, 13 pp.http://lib.physcon.ru/doc?id=4f9732200cd8
133.
M. V. Shamolin, “Negladkie pervye integraly v dinamike tverdogo tela, vzaimodeistvuyuschego s soprotivlyayuscheisya sredoi”, Vseros. konf. “Sovremennye problemy mekhaniki sploshnoi sredy”, posvyasch. pamyati akad. L. I. Sedova v svyazi so 110-letiem so dnya rozhd., Tezisy dokladov (Moskva, 13–15 noyabrya 2017 g.), MIAN, Moskva, 2017, 213–216http://www.mathnet.ru:8080/PresentFiles/18677/18677.pdf
M. V. Shamolin, “Pervye integraly dinamicheskikh sistem s dissipatsiei na kasatelnom rassloenii trekhmernogo mnogoobraziya”, Mezhdunarodnaya konferentsiya, posvyaschennaya 100-letiyu so dnya rozhdeniya S. G. Kreina, Sbornik materialov (Voronezh, 13–19 noyabrya 2017 g.), Izdatelskii dom VGU, Voronezh, 2017, 202–203
136.
M. V. Shamolin, “Integrable Systems with Dissipation in Dynamics”, Modern Problems of Mathematics and Mechanics, Proc. Int. conf. devoted to the 80-th anniversary of acad. A. Gadjiev (Baku, December 6–8, 2017), National Academy of Sciences of Azerbaijan, Baku, 2017, 204
137.
M. V. Shamolin, “Mathematical modeling of the action of a medium on a conical body”, Mathematical and Numerical Aspects of Dynamical System Analysis, 14th Conference on Dynamical Systems: Theory and Applications (DSTA 2017) (Lodz, December 11–14, 2017), eds. J. Awrejcewicz, M. Kazmierczak, J. Mrozowski, P. Olejnik, Lodz University, Lodz, 2017, 491–500
138.
M. V. Shamolin, “Non-smooth first integrals of dynamical systems with dissipation”, 14th Conference on Dynamical Systems: Theory and Applications (DSTA 2017), Abstracts (Lodz, December 11–14, 2017), eds. J. Awrejcewicz, M. Kazmierczak, J. Mrozowski, P. Olejnik, Lodz University, Lodz, 2017, 358
139.
M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 1. Dinamicheskie sistemy”, Vestnik SamU. Estestvennonauchnaya seriya, 23:3 (2017), 41–64
140.
M. V. Shamolin, “O dvizhenii mayatnika v mnogomernom prostranstve. Chast 2. Nezavisimost polya sil ot tenzora uglovoi skorosti”, Vestnik SamU. Estestvennonauchnaya seriya, 23:4 (2017), 40–67
2016
141.
M. V. Shamolin, “Chetyrekhmernoe tverdoe telo-mayatnik v nekonservativnom pole”, Materialy mezhdunarodnoi konferentsii “Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina–2016”, eds. V. A. Kostin, Izdatelsko-poligraficheskii tsentr “Nauchnaya kniga”, Voronezh, 2016, 433–436
142.
M. V. Shamolin, “Integrable Systems in the Dynamics on the Tangent Bundle of a Two-Dimensional Sphere”, Moscow University Mechanics Bulletin, 71:2 (2016), 27–32
143.
M. V. Shamolin, “Integrability in Elementary Functions of Certain Classes of Nonconservative Systems”, Advances in Mathematics and Computer Science and their Applications, Proc. of 7th European Conference on Applied Mathematics and Informatics (AMATHI16) (Venice, Italy, January 29–31, 2016), Mathematics and Computers in Science and Engineering Series, 57, eds. Imre J. Rudas, WSEAS Press, 2016, 50–58http://www.wseas.us/e-library/conferences/2016/venice/MAMUA/MAMUA-07.pdf
144.
M. V. Shamolin, “Transtsendentnye pervye integraly dinamicheskikh sistem s dissipatsiei”, Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya-XXVII, Materialy Voronezhskoi vesennei matem. shk. (Voronezh, 3–9 maya 2016 g.), Izdatelskii dom VGU, Voronezh, 2016, 292–294
145.
Yu. M. Okunev, V. A. Samsonov, B. Ya. Lokshin, A. P. Golub, M. Z. Dosaev, Yu. D. Selyutskii, O. G. Privalova, L. A. Klimina, S. V. Tsyptsyn, M. V. Shamolin, Problemy upravleniya dvizheniem tel, vzaimodeistvuyuschikh so sredoi, Nauchnyi otchet In-ta mekhaniki MGU im. M. V. Lomonosova № 5307, In-t mekhaniki MGU, Moskva, 2016 , 44 pp.
146.
M. V. Shamolin, “Integrable Nonconservative Dynamical Systems on the Tangent Bundle of the Multidimensional Sphere”, Differential Equations, 52:6 (2016), 722–738
147.
M. V. Shamolin, “Pervye integraly dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela”, Ustoichivost i kolebaniya nelineinykh sistem upravleniya, Mater. XIII Mezhd. konf. (Moskva, 1–3 iyunya 2016 g.), eds. V. N. Tkhai, IPU RAN, Moskva, 2016, 421–423
148.
M. V. Shamolin, “On integrability of dynamic equations of spatial pendulum motion in a nonconservative force field”, 11th HSTAM International Congress on Mechanics, Abstracts (Athens, Greese, May 27–30, 2016), HSTAM, Athens, 2016, 1 p.http://11hstam.ntua.gr/proceedings/assets/papers/abs/3.pdf
149.
M. V. Shamolin, “Pervye integraly dinamicheskikh sistem s dissipatsiei na kasatelnom rassloenii konechnomernoi sfery”, Geometricheskii analiz i ego prilozheniya, Materialy III Mezhdunarodnoi shkoly-konf. (Volgograd, 30 maya – 3 iyunya 2016 g.), VolGU, Volgograd, 2016, 217–222
150.
M. V. Shamolin, “On spatial pendulum in a nonconservative force field”, 5th International Conference on Mathematical Modeling in Physical Sciences (Athens, Greece, May 23–26, 2016), CD Progr. and Submissions, Athens, 2016, 1 p.http://www.icmsquare.net/index.php/about/history
151.
M. V. Shamolin, “Cases of integrability corresponding to the motion of a pendulum in the three-dimensional space”, XLIV Summer School-Conference "Advanced Problems in Mechanics, Dedicated to the 30th Anniversary of IPME RAS, Proceedings (St. Petersburg, June 27–July 2, 2016), IPME RAS, St. Petersburg, 2016, 375–387http://www.ipme.ru/ipme/conf/APM2016/2016-PDF/374__APM16.pdf
152.
M. V. Shamolin, “Integriruemye sistemy so znakoperemennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokladov (Suzdal, 08–12 iyulya 2016 g.), Kollektiv avtorov, Suzdal, 2016, 233–234
153.
M. V. Shamolin, “Cases of integrability corresponding to the motion of a pendulum in the three-dimensional space”, Global Conference on Applied Physics and Mathematics, Electronic Extended Abstracts (Rome, Italy, July 25–27, 2016), Rome, 2016, 3 p.http://www.scienceknowconferences.com/files/extended_abstracts/gcapm2016
154.
M. V. Shamolin, “First Integrals of Variable Dissipation Dynamical Systems in Rigid Body Dynamics”, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiys Conference) (Moscow, June 1–3, 2016), IEEE, 2016, 1–4http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7532297 (cited: 1)
155.
M. V. Shamolin, “On the problem of free deceleration of a rigid body in a resisting medium”, Journal of Applied Mechanics and Technical Physics, 57:4 (2016), 611–622
2017
156.
M. V. Shamolin, “On the Problem of a Free Drag of a Rigid Body with a Tapered Front in a Resisting Medium”, Mathematical Models and Computer Simulations, 9:2 (2017), 232–247
2016
157.
M. V. Shamolin, “A Multidimensional Pendulum in a Nonconservative Force Field under the Presence of Linear Damping”, Doklady Physics, 61:9 (2016), 476–480 (cited: 2) (cited: 5)
158.
M. V. Shamolin, “Integrable Systems with Variable Dissipation on the Tangent Bundle of a Sphere”, Journal of Mathematical Sciences, 219:2 (2016), 321–335 (cited: 4)
159.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na kasatelnykh rassloeniyakh dvumernykh mnogoobrazii”, Mezhd. nauchn. konf. “XXVII Krymskaya Osennyaya Matematicheskaya Shkola-simpozium po spektralnym i evolyutsionnym zadacham (KROMSh-2016)”, Tez. dokl. (Batiliman (Laspi), Rossiiskaya Federatsiya, 17–29 sentyabrya 2016 g.), Krymskii federalnyi universitet im. V. I. Vernadskogo, Simferopol, 2016, 34
160.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Ufimskaya mezhd. matem. konf., Sbornik tezisov (Ufa, 27–30 sentyabrya 2016 g.), eds. R. N. Garifullin, RITs BashGU, Ufa, 2016, 187–189
161.
M. V. Shamolin, “Transtsendentnye pervye integraly dinamicheskikh sistem s peremennoi dissipatsiei”, Mezhd. konf. “Metod funktsii Lyapunova i ego prilozheniya”, Tez. dokl. (Alushta, 15–18 sentyabrya 2016 g.), eds. O. V. Anashkin, Krymskii federalnyi un-t imeni V. I. Vernadskogo, Simferopol, 2016, 32–33
162.
M. V. Shamolin, “Avtokolebaniya pri modelirovanii vozdeistviya sredy na tverdoe telo”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Cb. tr. IX mezhdunar. konf. “PMTUKT-2016” (Voronezh, 20–26 sentyabrya 2016 g.), eds. I. L. Bataronov, A. P. Zhabko, V. V. Provotorov, Nauchnaya kniga, Voronezh, 2016, 398–401
163.
M. V. Shamolin, “Modelirovanie dvizheniya tela v soprotivlyayuscheisya srede i gidrodinamicheskie analogii”, X Vserossiiskaya nauchnaya konferentsiya “Nelineinye kolebaniya mekhanicheskikh sistem”, Trudy (Nizhnii Novgorod, 26–29 sentyabrya 2016 g.), eds. D. V. Balandin, V. I. Erofeev, I. S. Pavlov, Izdatelskii dom “Nash dom”, Nizhnii Novgorod, 2016, 820–830http://www.itmm.unn.ru/files/2016/06/X-Vseross.-nauch.-konf.-po-nelinejnym-kolebaniyam.pdf
2017
164.
M. V. Shamolin, “Dynamics of systems on bundles of multidimensional spheres”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 227:4 (2017), 387
165.
S. A. Agafonov, D. V. Georgievskii, M. V. Shamolin, “History and the “mathematical formula” of the Onegin stanza”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 227:4 (2017), 389
166.
M. V. Shamolin, “Multidimensional pendulum in a nonconservative field”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 227:4 (2017), 390
167.
M. V. Shamolin, “On the problem of the motion of a conical-shaped body in resistant media”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 227:4 (2017), 393
2016
168.
M. V. Shamolin, “New Cases of Integrable Systems with Dissipation on Tangent Bundles of Two- and Three-Dimensional Spheres”, Doklady Physics, 61:12 (2016), 625–629 (cited: 5) (cited: 9)
169.
M. V. Shamolin, “Integriruemye sistemy s dissipatsiei na rassloenii konechnomernoi sfery”, International Conference on Nonlinear Analysis and its Applications, Abstracts (Samarkand, Uzbekistan, September 19–21, 2016), Samarkand State University, Samarkand, 2016, 100
170.
M. V. Shamolin, “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii mnogomernoi sfery”, Mezhd. konf. “Sistemy Anosova i sovremennaya dinamika”, posvyaschennaya 80-letiyu so dnya rozhdeniya D. V. Anosova, Tezisy dokladov (Moskva, 19–23 dekabrya 2016 g.), Matem. inst. RAN im. V. A. Steklova, Moskva, 2016, 107–111http://www.mathnet.ru:8080/PresentFiles/16014/abstract.pdf
171.
M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika v trekhmernom prostranstve”, Vestnik SamGU. Estestvennonauchnaya seriya, 2016, no. 3–4, 75–97 (cited: 5)
M. V. Shamolin, “Novye sluchai integriruemykh sistem s dissipatsiei na kasatelnom rassloenii mnogomernoi sfery”, Sobolevskie chteniya, Mezhdunarodnaya shkola–konferentsiya (Novosibirsk, 18–22 dekabrya 2016 g.), Tezisy dokladov, eds. V. L. Vaskevich, G. V. Demidenko, IPTs NGU, Novosibirsk, 2016, 162
2018
174.
M. V. Shamolin, “Integrable Systems on the Tangent Bundle of a Multi-Dimensional Sphere”, Journal of Mathematical Sciences, 234:4 (2018), 548–590
2016
175.
R. R. Aidagulov, M. V. Shamolin, “Nonlocal hydrodynamics and some its applications”, Contemporary Mathematics and Its Applications, 100 (2016), 145–169
2017
176.
B. Ya. Lokshin, V. A. Samsonov, M. V. Shamolin, “Pendulum systems with dynamical symmetry”, Journal of Mathematical Sciences, 227:4 (2017), 461–519 (cited: 1)
177.
M. V. Shamolin, “Transcendental first integrals of dynamical systems on the tangent bundle to the sphere”, Journal of Mathematical Sciences, 227:4 (2017), 442–460 (cited: 1)
178.
M. V. Shamolin, “Integrable motions of a pendulum in a two-dimensional plane”, Journal of Mathematical Sciences, 227:4 (2017), 419–441 (cited: 1)
179.
R. R. Aidagulov, M. V. Shamolin, “Fast matrix multiplication by using color algebras”, Journal of Mathematical Sciences, 227:4 (2017), 402–406
180.
D. V. Georgievskii, M. V. Shamolin, “Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, "Urgent Problems of Geometry and Mechanics named after V. V. Trofimov”, Journal of Mathematical Sciences, 227:4 (2017), 387–394 (cited: 2)
2015
181.
M. V. Shamolin, “A Multidimensional Pendulum in a Nonconservative Force Field”, Doklady Physics, 60:1 (2015), 34–38 (cited: 2) (cited: 1) (cited: 1) (cited: 5)
182.
R. R. Aidagulov, M. V. Shamolin, “Polynumbers, Norms, Metrics, and Polyingles”, Journal of Mathematical Sciences, 204:6 (2015), 742–759 (cited: 2)
183.
R. R. Aidagulov, M. V. Shamolin, “Finsler Spaces, Bingles, Polyingles, and Their Symmetry Groups”, Journal of Mathematical Sciences, 204:6 (2015), 732–741 (cited: 2)
184.
R. R. Aidagulov, M. V. Shamolin, “Topology on Polynumbers and Fractals”, Journal of Mathematical Sciences, 204:6 (2015), 760–771 (cited: 2)
185.
D. V. Georgievskii, M. V. Shamolin, “Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent Problems of Geometry and Mechanics” Named After V. V. Trofimov”, Journal of Mathematical Sciences, 204:6 (2015), 715–731 (cited: 5)
186.
Yu. M. Okunev, M. V. Shamolin, “On the Construction of the General Solution of a Class of Complex Nonautonomous Equations”, Journal of Mathematical Sciences, 204:6 (2015), 787–799 (cited: 2)
187.
M. V. Shamolin, “Classification of Integrable Cases in the Dynamics of a Four-Dimensional Rigid Body in a Nonconservative Field in the Presence of a Tracking Force”, Journal of Mathematical Sciences, 204:6 (2015), 808–870 (cited: 3)
188.
M. V. Shamolin, “Survey of integrable cases in the dynamics of a four-dimensional rigid body in a nonconservative field”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 204:6 (2015), 719–720 (cited: 3)
189.
M. V. Shamolin, “Comparison of completely integrable cases in the dynamics of $2D$, $3D$, and $4D$ rigid bodies in nonconservative fields”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 204:6 (2015), 724 (cited: 3)
190.
M. V. Shamolin, “Systems of variable dissipation: approaches, methods, and applications”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 204:6 (2015), 725 (cited: 3)
191.
M. V. Shamolin, “On the problem of a pendulum in a nonconservative case”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 204:6 (2015), 727 (cited: 3)
192.
D. V. Georgievskii, M. V. Shamolin, “Urgent problems of geometry and mechanics: foundations, problems, methods, and applications”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 204:6 (2015), 730
193.
M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 204:6 (2015), 731 (cited: 3)
194.
M. V. Shamolin, “Simulation of Rigid Body Motion in a Resisting Medium and Analogies with Vortex Streets”, Mathematical Models and Computer Simulations, 7:4 (2015), 389–400 (cited: 2) (cited: 2) (cited: 3)
195.
M. V. Shamolin, “K zadache o dvizhenii tela konicheskoi formy v srede”, Mezhdunarodnaya nauchnaya konferentsiya po mekhanike «Sedmye Polyakhovskie chteniya», Tezisy dokladov (Sankt-Peterburg, 2–6 fevralya 2015 g.), Izdatel I. V. Balabanov, Moskva, 2015, 46
196.
M. V. Shamolin, “Integriruemye sistemy na kasatelnom rassloenii konechnomernoi sfery”, «Sovremennye metody teorii funktsii i smezhnye problemy», Materialy Mezhdunarodnoi konferentsii Voronezhskaya zimnyaya matematicheskaya shkola (Voronezh, 27 yanvarya – 2 fevralya 2015 g.), Izdatelskii dom VGU, Voronezh, 2015, 152–153
197.
M. V. Shamolin, “Complete List of First Integrals of Dynamic Equations for a Multidimensional Solid in a Nonconservative Field”, Doklady Physics, 60:4 (2015), 183–187 (cited: 1) (cited: 4)
198.
M. V. Shamolin, “Rigid body motion in a medium: data preparation for execution of experiments”, 86th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2015), CD Book of Abstracts (Lecce, Italy, March 23–27, 2015), Universita Del Salento, Lecce, 2015, 143http://conference.unisalento.it/ocs/public/conferences/1/download/scientific_program/S01.pdf
199.
M. V. Shamolin, “New Case of Complete Integrability of Dynamics Equations on a Tangent Fibering to a 3D Sphere”, Moscow University Mathematics Bulletin, 70:3 (2015), 111–114
200.
M. V. Shamolin, “Certain Integrable Cases in Dynamics of a Multi-Dimensional Rigid Body in a Nonconservative Field”, New Developments in Pure and Applied Mathematics, Proceedings of International Conference on Pure Mathematics–Applied Mathematics (PM–AM'15) (Vienna, Austria, March 15–17, 2015), Mathematics and Computers in Science and Engineering Series, 42, Vienna, Vienna, 2015, 328–342http://inase.org/library/2015/vienna/bypaper/MAPUR/MAPUR-53.pdf
201.
M. V. Shamolin, “Integriruemye dinamicheskie sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k konechnomernoi sfere”, Teoriya upravleniya i matematicheskoe modelirovanie, Tezisy dokladov Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, posvyaschennoi pamyati professora N. V. Azbeleva i professora E. L. Tonkova (Izhevsk, 9–11 iyunya 2015 g.), Udmurtskii universitet, Izhevsk, 2015, 143–144
202.
M. V. Shamolin, “Multidimensional pendulum in a nonconservative force field”, XLIII Summer School-Conference “Advanced Problems in Mechanics” (APM 2015), Proceedings (St. Petersburg, June 22–27, 2015), SPBSPU and IPME RAS, St. Petersburg, 2015, 322–332http://www.ipme.ru/ipme/conf/APM2015/2015-PDF/2015-401.pdf
203.
M. V. Shamolin, “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k dvumernoi sfere”, Mezhdunarodnaya konferentsiya po matematicheskoi teorii upravleniya i mekhanike, Tezisy dokladov (Suzdal, 3–7 iyulya 2015 g.), Kollektiv avtorov, Suzdal, 2015, 149–150
204.
M. V. Shamolin, “Integrable variable dissipation dynamical systems and some applications”, 8th International Congress on Industrial and Applied Mathematics (ICIAM 2015), Program and Abstracts (Beijing, China, August 10–14, 2015), Beijing, Beijing, 2015, 219
205.
M. V. Shamolin, “Rigid Body Motion in a Resisting Medium: Data Preparation for Execution of Experiments”, 9th European Solid Mechanics Conference (ESMC 2015), CD Abstracts (Madrid, July 6–10, 2015), Madrid, 2015, abstractID 38http://www.esmc2015.org/_contxt/_medien/_upload/_abstracts/38_abstract.pdf
206.
M. V. Shamolin, “Trajectories that have points at infinity as limit sets for dynamical systems on the plane”, Proc. Inst. Math. Mech., National Academy of Sciences of Azerbaijan, 41:1 (2015), 88–93http://www.proc.imm.az/volumes/41-1/41-01-09.pdf (cited: 1)
207.
M. V. Shamolin, “Semeistva fazovykh portretov v prostranstve kvaziskorostei v zadache o dvizhenii tverdogo tela v soprotivlyayuscheisya srede”, XI Vserossiiskii s'ezd po fundamentalnym problemam teoreticheskoi i prikladnoi mekhaniki, Sbornik trudov (Kazan, 20–24 avgusta 2015 g.), Kazanskii (Privolzhskii) federalnyi universitet, Kazan, 2015, 4169–4170
208.
M. V. Shamolin, “Integrable variable dissipation dynamical systems: methods and some applications”, 4th International Conference on Mathematical Modeling in Physical Sciences, CD Program and Submissions (Mykonos, Greece, June 5–8, 2015), Mykonos, 2015, No. 187http://www.icmsquare.net/index.php/about/history
209.
M. V. Shamolin, “Complete List of the First Integrals of Dynamic Equations of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping”, Doklady Physics, 60:10 (2015), 471–475 (cited: 3) (cited: 8)
210.
M. V. Shamolin, “Obzor sluchaev integriruemosti v mnogomernoi dinamike nekonservativnykh sistem”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical System Modelling and Stability Investigation). XVII International Conference, Abstracts of Conference Reports (Kiev, May 27–29, 2015), Kiev, 2015, 57http://www.dsmsi.univ.kiev.ua/downloads/book_DSMSI-2015.pdf
211.
M. V. Shamolin, “Modelirovanie vozdeistviya sredy na tverdoe telo s perednei chastyu v vide konusa”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii (PMTUKT-2015), Sb. trudov VIII mezhdunarodnoi konferentsii (Voronezh, 21–26 sentyabrya 2015 g.), eds. I. L. Bataronov, A. P. Zhabko, V. V. Provotorov, Nauchnaya kniga, Voronezh, 2015, 388–390
212.
M. V. Shamolin, “Sluchai integriruemosti v zadache o dvizhenii tverdogo tela v nekonservativnom pole pod deistviem sledyaschei sily”, Ustoichivost i protsessy upravleniya, Materialy III mezhdunarodnoi konferentsii (Sankt-Peterburg, 5–9 oktyabrya 2015 g.), eds. A. P. Zhabko, L. A. Petrosyan, Izdatelskii Dom Fedorovoi G.V., Sankt-Peterburg, 2015, 157–158
213.
A. V. Andreev, M. V. Shamolin, “Simulation of the action of a medium on a conical body and the family of phase portraits in the space of quasivelocities”, Journal of Applied Mechanics and Technical Physics, 56:4 (2015), 612–617
214.
M. V. Shamolin, “Dinamicheskie sistemy na kasatelnom rassloenii mnogomernoi sfery, integriruemye v transtsendentnykh funktsiyakh”, Teoriya priblizhenii funktsii i rodstvennye zadachi analiza, Materialy Mezhdunarodnoi nauchnoi konferentsii (Kollektivnaya monografiya), posvyaschennoi pamyati professora P. P. Korovkina (Kaluga, oktyabr 2015 g.), Izdatelstvo KGU im. K. E. Tsiolkovskogo, Kaluga, 2015, 85–86
215.
M. V. Shamolin, “Dynamical Systems With Variable Dissipation: Methods and Applications”, Recent Advances on Computational Science and Applications, Proc. of 4th Intern. Conf. on Applied and Computational Math. (ICACM'15) (Seoul, South Korea, September 5–7, 2015), Mathematics and Computers in Science and Engineering Series, 52, eds. Imre J. Rudas, WSEAS Press, 2015, 81–90http://www.wseas.us/e-library/conferences/2015/Seoul/ACME/ACME-12.pdf
2017
216.
M. V. Shamolin, “On the motion of a multidimensional rigid body (pendulum) in a nonconservative field”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 221:2 (2017), 156
217.
M. V. Shamolin, “Review of integrable cases in the dynamics of a multidimensional rigid body in a nonconservative force field”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 221:2 (2017), 157
218.
N. V. Pokhodnya, M. V. Shamolin, “On an integrable case in the dynamics of a multidimensional body”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 221:2 (2017), 158
219.
M. V. Shamolin, “A new integrable case in the dynamics of a multidimensional rigid body in a nonconservative field”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 221:2 (2017), 159
220.
M. V. Shamolin, “Cases of integrability in transcendental functions in multidimensional dynamics”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 221:2 (2017), 160
2015
221.
M. V. Shamolin, “Transtsendentnye pervye integraly klassov dinamicheskikh sistem s simmetriyami”, Matematicheskaya fizika i rodstvennye problemy sovremennogo analiza, Materialy Resp. nauchn. konf. (Bukhara, 26–27 noyabrya 2015 g.), Bukharskii gos. un–t, Bukhara, 2015, 292–293
222.
M. V. Shamolin, “On lower- and multi-dimensional pendulum in a nonconservative force fields”, Dynamical Systems. Mathematical and Numerical Approaches, eds. J. Awrejcewicz, M. Kazmierczak, J. Mrozowski, P. Olejnik, Lodz University of Technology, Lodz, 2015, 449–460
223.
M. V. Shamolin, “Sluchai integriruemosti, sootvetstvuyuschie dvizheniyu mayatnika na ploskosti”, Vestnik SamGU. Estestvennonauchnaya seriya, 2015, no. 10(132), 91–113 (cited: 5)
2018
224.
M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, Journal of Mathematical Sciences, 230:2 (2018), 185–353 (cited: 1) (cited: 1)
2017
225.
M. V. Shamolin, “Some problems of qualitative analysis in the modeling of the motion of rigid bodies in resistive media”, Journal of Mathematical Sciences, 221:2 (2017), 260–296 (cited: 1)
226.
M. V. Shamolin, “New cases of integrability of equations of motion of a rigid body in the $n$-dimensional space”, Journal of Mathematical Sciences, 221:2 (2017), 205–259
227.
A. V. Andreev, M. V. Shamolin, “Methods of mathematical modeling of the action of a medium on a conical body”, Journal of Mathematical Sciences, 221:2 (2017), 161–168
228.
D. V. Georgievskii, M. V. Shamolin, “Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent Problems of Geometry and Mechanics” named after V. V. Trofimov”, Journal of Mathematical Sciences, 221:2 (2017), 155–160 (cited: 1)
2014
229.
M. V. Shamolin, “Obzor sluchaev integriruemosti uravnenii dvizheniya mnogomernogo tverdogo tela v nekonservativnom pole”, Materialy mezhdunarodnoi konferentsii «Voronezhskaya zimnyaya matematicheskaya shkola S. G. Kreina-2014» (Voronezh, yanvar 2014 g.), eds. V. A. Kostin, Izdatelsko-poligraficheskii tsentr «Nauchnaya kniga», Voronezh, 2014, 404–408
230.
M. V. Shamolin, “On stability of certain key types of rigid body motion in a nonconservative field”, 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics, GAMM 2014, CD Book of Abstracts (Erlangen, Germany, March 10–14, 2014), FAU, Erlangen, 2014, 237
231.
N. L. Polyakov, M. V. Shamolin, “On a Generalization of Arrow’s Impossibility Theorem”, Doklady Mathematics, 89:3 (2014), 290–292 (cited: 1)
232.
M. V. Shamolin, “Review of Cases of Integrability in Dynamics of Lower- and Multidimensional Rigid Body in a Nonconservative Field of Forces”, Recent Advances in Mathematics, Statistics and Economics, Proceedings of 2014 International Conference on Pure Mathematics–Applied Mathematics (PM–AM'14) (Venice, Italy, March 15–17, 2014), EUROPMENT, Venice, Venice, 2014, 86–102http://www.europment.org/library/2014/venice/bypaper/FIMATH/FIMATH-13.pdf
233.
M. V. Shamolin, “Integriruemye sistemy na kasatelnom rassloenii mnogomernoi sfery”, Materialy Voronezhskoi vesennei matem. shk. «Sovremennye metody teorii kraevykh zadach. «Pontryaginskie chteniya-XXV» (Voronezh, mai 2014 g.), IPTs «Nauchnaya kniga», Voronezh, 2014, 196–197
234.
M. V. Shamolin, “Mnogoobrazie sluchaev integriruemosti v dinamike tverdogo tela v nekonservativnom pole sil”, XVI Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam («Eruginskie chteniya-2014»), Tezisy dokladov (Novopolotsk, Belarus, 20–22 maya 2014 g.), Chast 2, Institut matematiki NAN Belarusi, Minsk, 2014, 77–78
235.
M. V. Shamolin, “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k konechnomernoi sfere”, Geometricheskii analiz i ego prilozheniya, Materialy II Mezhdunarodnoi konferentsii (Volgograd, 26–30 maya 2014 g.), VolGU, Volgograd, 2014, 143–145
236.
M. V. Shamolin, “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede pod deistviem sledyaschei sily: kachestvennyi analiz i integriruemost”, XII Vserossiiskoe soveschanie po problemam upravleniya (VSPU-2014), Trudy. [Elektronnyi resurs] (Moskva, 16–19 iyunya 2014 g.), IPU RAN, Moskva, 2014, 1813–1824
237.
M. V. Shamolin, “A New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping”, Doklady Physics, 59:8 (2014), 375–378 (cited: 4) (cited: 2) (cited: 2) (cited: 4)
238.
M. V. Shamolin, “Integriruemye sistemy s peremennoi dissipatsiei na kasatelnom rassloenii k mnogomernoi sfere”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokladov (Suzdal, 4–9 iyulya 2014 g.), Kollektiv avtorov, Suzdal, 2014, 182–183
239.
N. Yu. Selivanova, M. V. Shamolin, “Diagnostika nekotoroi sistemy pryamogo upravleniya iz teorii letatelnykh apparatov”, Mezhdunarodnaya konferentsiya «Oblasti primeneniya i novye tekhnologii prepodavaniya matematiki i IKT» ("Mathematics and ICT application sphere. New training technologies") (Gyandzha, Azerbaidzhan, 5–6 iyunya 2014 g.), I, Gyandzha, 2014, 18–22
240.
M. V. Shamolin, “New cases of integrability in multidimensional dynamics in a nonconservative field”, XLII Summer School-Conference “Advanced Problems in Mechanics” (APM 2014), CD Proceedings (St. Petersburg (Repino), Russia, June 30–July 5, 2014), St. Petersburg, 2014, 435–446http://www.ipme.ru/ipme/conf/APM2014/2014-PDF/2014-435.pdf
241.
M. V. Shamolin, “Review of cases of integrability in dynamics of a rigid body in a nonconservative field”, XXXIV Dynamics Days Europe, 8–12 September 2014, University of Bayreuth, Germany, Book of Abstracts (Bayreuth, Germany, September 8–12, 2014), Universitat Bayreuth, 2014, 186
242.
M. V. Shamolin, “On Stability of Certain Key Types of Rigid Body Motion in a Nonconservative Field”, 2014 International Simposium on Nonlinear Theory and its Applications, Proceedings of NOLTA 2014 (Luzern, Switzerland, September 14–18, 2014), Luzern, 2014, 36–39
243.
A. V. Andreev, M. V. Shamolin, “Semeistva fazovykh portretov v zadache o dvizhenii tverdogo tela v soprotivlyayuscheisya srede”, Mezhdunarodnaya konferentsiya «Metod funktsii Lyapunova i ego prilozheniya» (MFL-2014), Tezisy dokladov (Krym, Alushta, 15–20 sentyabrya 2014 g.), eds. O. V. Anashkin, Tavrich. natsion. un-t, Simferopol, 2014, 51–53
244.
M. V. Shamolin, “Sistemy na kasatelnom rassloenii mnogomernoi sfery, integriruemye v transtsendentnykh funktsiyakh”, Mezhdunarodnaya konferentsiya «Metod funktsii Lyapunova i ego prilozheniya» (MFL-2014), Tezisy dokladov (Krym, Alushta, 15–20 sentyabrya 2014 g.), eds. O. V. Anashkin, Tavrich. natsion. un-t, Simferopol, 2014, 53–54
245.
M. V. Shamolin, “Matematicheskoe modelirovanie vozdeistviya sredy na tverdoe telo v usloviyakh kvazistatsionarnosti”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii (PMTUKT-2014), Sbornik trudov VII mezhdunarodnoi konferentsii (Voronezh, 14–21 sentyabrya 2014 g.), Nauchnaya kniga, Voronezh, 2014, 395–397
246.
N. V. Pokhodnya, M. V. Shamolin, “Integriruemye sistemy na kasatelnom rassloenii k mnogomernoi sfere”, Vestnik SamGU. Estestvennonauchnaya seriya, 2014, no. 7(118), 60–69
247.
M. V. Shamolin, “Dynamical Pendulum-Like Nonconservative Systems”, Applied Non-Linear Dynamical Systems, Springer Proceedings in Mathematics and Statistics, 93, eds. Jan Awrejcewicz, Springer International Publishing, Switzerland, 2014, 503–525 (cited: 3)
2015
248.
M. V. Shamolin, “Some Classes of Integrable Problems in Spatial Dynamics of a Rigid Body in a Nonconservative Force Field”, Journal of Mathematical Sciences, 210:3 (2015), 292–330 (cited: 1)
2014
249.
M. V. Shamolin, “On stability of certain key types of rigid body motion in a nonconservative field”, PAMM, 14:1 (2014), 311–312
250.
M. V. Shamolin, “Integriruemost sistem s peremennoi dissipatsiei na rassloenii k dvumernoi sfere”, Tez. dokl. nauchn. konf. «Lomonosovskie chteniya-2014», Sektsiya mekhaniki (Moskva, 14–23 aprelya 2014 g.), MGU, Moskva, 2014, 143–144http://www.imec.msu.ru/content/lom_reading/2014/lomonosov_2014_mech.pdf
251.
A. V. Andreev, M. V. Shamolin, “Matematicheskoe modelirovanie vozdeistviya sredy na tverdoe telo i novoe dvukhparametricheskoe semeistvo fazovykh portretov”, Vestnik SamGU. Estestvennonauchnaya seriya, 2014, no. 10(121), 109–115 (cited: 1)
2016
252.
M. V. Shamolin, “Integrable Cases in the Dynamics of a Multi-dimensional Rigid Body in a Nonconservative Force Field in the Presence of a Tracking Force”, Journal of Mathematical Sciences, 214:6 (2016), 865–891
2014
253.
M. V. Shamolin, “On stability of certain types of rigid body motion in a resisting medium”, ICNPAA 2014 Congress, Presentations and Authors (Narvik, Norway, July 15–18, 2014), Narvik University, Narvik, 2014, Poster № 952http://http://icnpaa.com/index.php/icnpaa/2014/paper/view/952
2013
254.
M. V. Shamolin, “Obzor sluchaev integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy Voronezhskoi zimnei matematicheskoi shkoly (Voronezh, 27 yanvarya – 2 fevralya 2013 g.), Izd.-poligr. tsentr Voronezhskogo gos. un-ta, Voronezh, 2013, 279
255.
M. V. Shamolin, “Complete List of First Integrals of Dynamic Equations of Motion of a 4D Rigid Body in a Nonconservative Field under the Assumption of Linear Damping”, Doklady Physics, 58:4 (2013), 143–146 (cited: 1) (cited: 1)
256.
M. V. Shamolin, “Obzor sluchaev integriruemosti v mnogomernoi dinamike tverdogo tela v nekonservativnom pole”, Funktsionalnye prostranstva. Differentsialnye operatory. Obschaya topologiya. Problemy matematicheskogo obrazovaniya, Tezisy dokladov Chetvertoi Mezhdunarodnoi konf., posvyasch. 90-letiyu so dnya rozhd. L. D. Kudryavtseva (Moskva, 25–29 marta 2013 g.), RUDN, Moskva, 2013, 258–259
257.
M. V. Shamolin, “Qualitative Aspects of a Rigid Body Motion in a Resistant Medium”, GAMM 2013, CD Book of Abstracts (Novi Sad, Serbia, March, 18–22, 2013), Novi Sad, Novi Sad, 2013, 112
258.
M. V. Shamolin, “Obzor sluchaev integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical System Modelling and Stability Investigation), Tezisy dokladov, XVI Intern. Conf. (Kiev, Ukraina, 29–31 maya 2013 g.), Kiev, Kiev, 2013, 146http://www.dsmsi.univ.kiev.ua/downloads/book_DSMSI-2013.pdf
259.
M. V. Shamolin, “Review of cases of integrability in dynamics of low- and multidimensional rigid body in a nonconservative field”, XXXIII International Conference Dynamics Days Europe 2013, Book of Abstracts (Madrid, Spain, June 3–7, 2013), CTB UPM, Madrid, Spane, 2013, 157http://www.dynamics-days-europe-2013.org/DDEXXXIII-AbstractsBook.pdf
260.
M. V. Shamolin, “Nekotorye sluchai integriruemosti v dinamike na kasatelnom rassloenii k trekhmernoi sfere”, Sovremennye metody teorii kraevykh zadach. “Pontryaginskie chteniya-XXIV”, Materialy Voronezhskoi vesennei matematicheskoi shk. (Voronezh, mai 2013 g.), Voronezhskii gos. un-t, Voronezh, 2013, 222–223
261.
M. V. Shamolin, “Prostranstvennoe dvizhenie tverdogo tela s perednim kruglym tortsom v soprotivlyayuscheisya srede”, Mezhdunarodnaya konf. «Vosmye Okunevskie chteniya», Materialy dokladov (Sankt-Peterburg, 25–28 iyunya 2013 g.), Baltiiskii gos. un-t, Sankt-Peterburg, 2013, 439–440
262.
M. V. Shamolin, “Cases of integrability in transcendental functions in 3D Dynamics of a rigid body interacting with a medium”, ECCOMAS Multibody Dynamics 2013, CD Proceedings (Zagreb, Croatia, July 1–4, 2013), University of Zagreb, Zagreb, 2013, 903–912 (cited: 4)
263.
M. V. Shamolin, “Variety of the cases of integrability in Dynamics of a symmetric 2D-, 3D- and 4D-rigid body in a nonconservative field”, Intern. J. Structural Stability and Dynamics, 13:7 (2013), 1340011 , 14 pp. (cited: 1) (cited: 4)
264.
M. V. Shamolin, “A New Case of Integrability in Transcendental Functions in the Dynamics of Solid Body Interacting with the Environment”, Automation and Remote Control, 74:8 (2013), 1378–1392 (cited: 1)
265.
M. V. Shamolin, “Obzor sluchaev integriruemosti uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole sil”, Differentsialnye uravneniya. Funktsionalnye prostranstva. Teoriya priblizhenii. Mezhdun. konf., posvyasch. 105-letiyu S. L. Soboleva, Tezisy dokladov (Novosibirsk, 18–24 avgusta 2013 g.), In-t matematiki SO RAN, Novosibirsk, 2013, 296http://www.math.nsc.ru/conference/sobolev/105/Book-Abstracts.pdf#page=297
266.
M. V. Shamolin, “Review of integrable cases in dynamics of small- and multidimensional rigid body in a nonconservative field”, Advanced Problems in Mechanics: book of abstracts of International Summer School-Conference (Saint Petersburg, Russia, July 1–6, 2013), Polytechnical University Publishing House, Saint Petersburg, 2013, 99
267.
M. V. Shamolin, “Obzor sluchaev integriruemosti uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole”, International mathematical conference “Bogolyubov readings DIF-2013. Differential equations, theory of functions and their applications” on the occasion of the 75th anniversary of academisian A. M. Samoilenko, Abstracts (Sevastopol, June 28-30, 2013), Institute of Mathamatics of NAS of Ukraine, Kyiv, 2013, 308
268.
M. V. Shamolin, “Novyi sluchai integriruemosti v dinamike mnogomernogo tverdogo tela v nekonservativnom pole sil”, Differentsialnye uravneniya i ikh prilozheniya (SamDif-2013), Tezisy dokladov (Samara, 1–3 iyulya 2013 g.), Vserossiiskaya nauchnaya konferentsiya, Samarskii universitet, Samara, 2013, 96–97
269.
M. V. Shamolin, “New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field”, Doklady Physics, 58:11 (2013), 496–499 (cited: 8) (cited: 3) (cited: 3) (cited: 11)
270.
N. L. Polyakov, M. V. Shamolin, “O zamknutykh simmetrichnykh klassakh funktsii, sokhranyayuschikh lyuboi odnomestnyi predikat”, Vestnik SamGU. Estestvennonauchnaya seriya, 2013, no. 6(107), 61–73 (cited: 3)
271.
M. V. Shamolin, “New case of integrability of dynamic equations on the tangent bundle of a 3-sphere”, Russian Math. Surveys, 68:5 (2013), 963–965
272.
M. V. Shamolin, “Sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela v nekonservativnom pole”, Tez. dokl. nauchn. konf. «Lomonosovskie chteniya-2013», Sektsiya mekhaniki (Moskva, aprel 2013 g.), MGU, Moskva, 2013, 142http://www.imec.msu.ru/content/lom_reading/2013/lomonosov_2013_mech.pdf
273.
M. V. Shamolin, “Turbulentnost po Kolmogorovu i dinamika tverdogo tela, vzaimodeistvuyuschego so sredoi”, Mezhdunarodnaya nauchnaya konferentsiya «Turbulentnost i volnovye protsessy», posvyaschennaya 100-letiyu so dnya rozhdeniya akad. M. D. Millionschikova, Sbornik tezisov (Moskva, 26–28 noyabrya 2013 g.), OOO «Intuit.ru», Moskva, 2013, 182–183
274.
M. V. Shamolin, “On integrability in dynamic problems for a rigid body interacting with a medium”, Int. Appl. Mech., 49:6 (2013), 665–674 (cited: 1) (cited: 2)
275.
M. V. Shamolin, “Dynamical pendulum-like nonconservative systems”, 12th Conference on Dynamical Systems: Theory and Applications (DSTA 2013), Abstracts (Lodz, Poland, December 2–5, 2013), Lodz University of Technology, 2013, 160
2015
276.
M. V. Shamolin, “Variety of Integrable Cases in Dynamics of Low- and Multi-Dimensional Rigid Bodies in Nonconservative Force Fields”, Journal of Mathematical Sciences, 204:4 (2015), 379–530 (cited: 14)
2013
277.
N. V. Pokhodnya, M. V. Shamolin, “Nekotorye usloviya integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Vestnik SamGU. Estestvennonauchnaya seriya, 2013, no. 9/1(110), 35–41 (cited: 7) (cited: 1)
2012
278.
D. V. Georgievskii, M. V. Shamolin, “Levi–Civita symbols, generalized vector products, and new integrable cases in Mechanics of multidimensional bodies”, Journal of Mathematical Sciences, 187:3 (2012), 280–299 (cited: 5) (cited: 7)
279.
M. V. Shamolin, “Comparison of complete integrability cases in Dynamics of a two-, three-, and four-dimensional rigid body in a nonconservative field”, Journal of Mathematical Sciences, 187:3 (2012), 346–359 (cited: 2) (cited: 6)
280.
S. A. Agafonov, D. V. Georgievskii, M. V. Shamolin, “On the role of women in the development of modern mechanics”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 187:3 (2012), 269 (cited: 7)
281.
M. V. Shamolin, “Systems with variable dissipation: Methods, approaches, and applications”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 187:3 (2012), 270
282.
M. V. Shamolin, “Cases of complete integrability in terms of transcendental functions in dynamics of a rigid body interacting with a medium”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 187:3 (2012), 270
283.
D. V. Georgievskii, M. V. Shamolin, “Levi–Civita symbols, generalized vector products, and new integrability cases in manydimensional body mechanics”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 187:3 (2012), 271
284.
M. V. Shamolin, “Sluchai integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Voronezhskaya zimn. matem. shk. S. G. Kreina, 2012, Materialy mezhd. konf. (Voronezh, 25–30 yanvarya 2012 g.), VGU, Voronezh, 2012, 213–215
285.
M. V. Shamolin, “A New Case of Integrability in Spatial Dynamics of a Rigid Solid Interacting with a Medium under Assumption of Linear Damping”, Doklady Physics, 57:2 (2012), 78–80 (cited: 7) (cited: 7) (cited: 7) (cited: 9)
286.
M. V. Shamolin, “Sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi pri struinom obtekanii”, VI Polyakhovskie chteniya, Tez. dokl. Mezhd. nauchn. konf. po mekhan. (Sankt-Peterburg, 31 yanvarya – 3 fevralya 2012 g.), Izdatel I. V. Balabanov, Sankt-Peterburg, 2012, 75
287.
M. V. Shamolin, “A new case of integrability in the dynamics of a 4D-rigid body in a nonconservative field under the assumption of linear damping”, Doklady Physics, 57:6 (2012), 250–253 (cited: 5) (cited: 4) (cited: 4) (cited: 6)
288.
M. V. Shamolin, “Novye sluchai integriruemosti v transtsendentnykh funktsiyakh v dinamike tverdogo tela v nekonservativnom pole”, Sovremennye metody teorii kraevykh zadach, Mat. Voronezhskoi vesennei matem. shk. “Pontryaginskie chteniya-XXIII” (Voronezh, 3–9 maya 2012 g.), Voronezhskii gos. un-t, Voronezh, 2012, 200
289.
M. V. Shamolin, “Novyi sluchai integriruemosti v transtsendentnykh funktsiyakh v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Ustoichivost i kolebaniya nelineinykh sistem upravleniya, XII Mezhd. konf. (konf. Pyatnitskogo). Tezisy dokladov (Moskva, 5–8 iyunya 2012 g.), IPU RAN, Moskva, 2012, 339–341
290.
M. V. Shamolin, “Sluchai integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, pri uchete lineinogo dempfirovaniya”, “Analiticheskaya mekhanika, ustoichivost i upravlenie”. Tr. X Mezhdunarodnoi Chetaevskoi konferentsii, Sektsiya 1. Analiticheskaya mekhanika (Kazan, 12–16 iyunya 2012 g.), 1, Kazan. gos. tekhn. un-t, Kazan, 2012, 508–514http://old.kai.ru/science/konf/chetaev/Tom_1_Analiticheskaya_mehanika.pdf
2013
291.
N. Yu. Selivanova, M. V. Shamolin, “Local solvability of a one-phase problem with free boundary”, Journal of Mathematical Sciences, 189:2 (2013), 274–283
292.
N. Yu. Selivanova, M. V. Shamolin, “Studying the interphase zone in a certain singular-limit problem”, Journal of Mathematical Sciences, 189:2 (2013), 284–293
293.
N. Yu. Selivanova, M. V. Shamolin, “Local solvability of the Capillary problem”, Journal of Mathematical Sciences, 189:2 (2013), 294–300
294.
N. Yu. Selivanova, M. V. Shamolin, “Quasi-stationary Stefan problem with values on the front depending on its geometry”, Journal of Mathematical Sciences, 189:2 (2013), 301–310
295.
M. V. Shamolin, “Some questions of qualitative theory in dynamics of systems with the variable dissipation”, Journal of Mathematical Sciences, 189:2 (2013), 314–323 (cited: 2) (cited: 5)
2012
296.
M. V. Shamolin, “Complete list of first integrals for dynamic equations of motion of a solid body in a resisting medium with consideration of linear damping”, Moscow University Mechanics Bulletin, 67:4 (2012), 92–95
297.
M. V. Shamolin, “Cases of integrability in dynamics of a rigid body interacting with a resistant medium”, 23th International Congress of Theoretitical and Applied Mechanics, CD-Proceedings (Beijing, China, August 19–24, 2012), China Science Literature Publishing House, Beijing, 2012, 2 p.
298.
M. V. Shamolin, “Obzor sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole”, Mezhd. konf. po diff. uravneniyam i din. sistemam, Tezisy dokladov (Suzdal, 29 iyunya – 4 iyulya 2012 g.), Kollektiv avtorov, Suzdal, 2012, 179–180
299.
M. V. Shamolin, “Variety of the cases of integrability in dynamics of a 2D-, and 3D-rigid body interacting with a medium”, 8th ESMC 2012, CD-Materials (Graz, Austria, July 9–13, 2012), Graz, Graz, Austria, 2012, 2 p.
300.
M. V. Shamolin, “Mnogoobrazie sluchaev integriruemosti v dinamike tverdogo tela v nekonservativnom pole”, Tez. dokl. nauchn. konf. “Lomonosovskie chteniya-2012”, Sektsiya mekhaniki (Moskva, aprel 2012 g.), MGU, Moskva, 2012, 156http://www.imec.msu.ru/content/lom_reading/2012/lomonosov_2012_mech.pdf
301.
M. V. Shamolin, “Zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchetom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti”, Matem. modelirovanie, 24:10 (2012), 109–132 (cited: 5) (cited: 3)
302.
M. V. Shamolin, “Cases of Complete Integrability in Transcendental Functions in Dynamics and Certain Invariant Indices”, PAMM, 12:1 (2012), 43–44
303.
M. V. Shamolin, “Obzor sluchaev integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonsevativnom pole”, Mezhdunarodnaya konf. “Analiz i osobennosti”, posvyaschennaya 75-letiyu V. I. Arnolda, Tezisy dokladov (Moskva, 17–21 dekabrya 2012 g.), MIAN, Kollektiv avtorov, Moskva, 2012, 112–113
304.
N. V. Pokhodnya, M. V. Shamolin, “New case of integrability in dynamics of multi-dimensional body”, Vestnik SamGU, 2012, no. 9, 136–150
305.
M. V. Shamolin, “Cases of Complete Integrability in Transcendental Functions in Dynamics and Certain Invariant Indices”, 83th Annual Scientific Conference of the International Association of Applied Mathematics and Mechanics (GAMM), Book of Abstracts, Technische Universitat Darmstadt (Darmstadt, Germany, March 26–30, 2012), TU-Darmstadt, Darmstadt, 2012, 48
306.
D. V. Georgievskii, M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov”, Journal of Mathematical Sciences, 187:3 (2012), 269–271 (cited: 2) (cited: 7)
2011
307.
M. V. Shamolin, “A New Case of Integrability in Dynamics of a 4D-Solid in a Nonconservative Field”, Doklady Physics, 56:3 (2011), 186–189 (cited: 2) (cited: 2)
308.
Yu. G. Vyshkvarko, M. V. Shamolin, “Nekotorye voprosy kachestvennoi teorii v dinamike tverdogo tela”, Materialy Vseros. konf., posvyasch. 110-letiyu matem. f-ta MPGU “Matematika, informatika i metodika ikh prepodavaniya” (Moskva, 14–16 marta 2011 g.), MPGU, Moskva, 2011, 40–41
309.
A. V. Mokeev, M. V. Shamolin, “Nekotorye zadachi differentsialnoi diagnostiki”, Materialy Vseros. konf., posvyasch. 110-letiyu matem. f-ta MPGU “Matematika, informatika i metodika ikh prepodavaniya” (Moskva, 14–16 marta 2011 g.), MPGU, Moskva, 2011, 72–74
310.
N. V. Pokhodnya, M. V. Shamolin, “Nekotorye prilozheniya teorii fraktalov v dinamike”, Materialy Vseros. konf., posvyasch. 110-letiyu matem. f-ta MPGU “Matematika, informatika i metodika ikh prepodavaniya” (Moskva, 14–16 marta 2011 g.), MPGU, Moskva, 2011, 81–82
311.
N. Yu. Selivanova, M. V. Shamolin, “Lokalnaya razreshimost odnoi odnofaznoi zadachi so svobodnoi granitsei”, Mat. Voronezhskoi zimnei matem. shk. “Sovremennye metody teorii funktsii i smezhnye problemy” (Voronezh, 26 yanvarya – 1 fevralya 2011 g.), Voronezhskii gos. un-t, Voronezh, 2011, 307
312.
N. Yu. Selivanova, M. V. Shamolin, “Issledovanie mezhfaznoi zony v nekotoroi singulyarno predelnoi zadache”, Mat. Voronezhskoi vesennei matem. shk. “Sovremennye metody teorii kraevykh zadachyu "Pontryaginskie chteniya-XXII” (Voronezh, 3–9 maya 2011 g.), Voronezhskii gos. un-t, Voronezh, 2011, 164–165
313.
M. V. Shamolin, “Cases of complete integrability in transcendental functions in dynamics and certain invariant indices”, 5th Int. Sci. Conf. on Physics and Control PHYSCON 2011, CD-Proceedings (Leon, Spain, September 5–8, 2011), Leon, Leon, 2011, 5 p.
314.
M. V. Shamolin, “Complete List of First Integrals in the Problem on the Motion of a 4D Solid in a Resisting Medium under Assumption of Linear Damping”, Doklady Physics, 56:9 (2011), 498–501 (cited: 1) (cited: 1) (cited: 1) (cited: 1)
315.
M. V. Shamolin, “Diagnostika girostabilizirovannoi platformy, vklyuchennoi v sistemu upravleniya dvizheniem letatelnogo apparata”, Elektronnoe modelirovanie, 33:3 (2011), 121–126http://www.emodel.org.ua/images/em/all-pdf/11-3.pdf
316.
M. V. Shamolin, “Sopostavlenie sluchaev polnoi integriruemosti v dinamike dvumernogo, trekhmernogo i chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical System Modelling and Stability Investigation). XV Int. Conf., Tezisy dokladov (Kiev, Ukraina, 25–27 maya 2011 g.), Kiev, Kiev, 2011, 139http://www.dsmsi.univ.kiev.ua/downloads/book_DSMSI-2011.pdf
317.
M. V. Shamolin, “Dinamicheskie invarianty integriruemykh dinamicheskikh sistem s peremennoi dissipatsiei”, Vestnik Nizhegorodskogo un-ta im. N. I. Lobachevskogo, 4:2 (2011), 356–357
318.
M. V. Shamolin, “Polnye spiski pervykh integralov v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Mezhd. konf., posvyasch. 110-i godovschine I. G. Petrovskogo (XXIII sovmestn. zased. MMO i sem. im. I. G. Petrovskogo), Tezisy dokladov (Moskva, 2011 g.), MGU i OOO “Intuit.RU”, 2011, 389–390
319.
M. V. Shamolin, “A Multiparameter Family of Phase Portraits in the Dynamics of a Rigid Body Interacting with a Medium”, Moscow University Mechanics Bulletin, 66:3 (2011), 49–55
320.
M. V. Shamolin, “Variety of the cases of integrability in dynamics of a 2D-, 3D-, and 4D-rigid body interacting with a medium”, Proc. of 11th Conf. on Dynamical Sestems (Theory and Applications) (DSTA 2011) (Lodz, Poland, December 5–8, 2011), Tech. Univ. Lodz, Lodz, 2011, 11–24
321.
M. V. Shamolin, “Novyi sluchai polnoi integriruemosti uravnenii dinamiki na kasatelnom rassloenii k trekhmernoi sfere”, Vestnik SamGU. Estestvennonauchnaya seriya. Miscellaneous, 2011, no. 5(86), 187–189 (cited: 3)
322.
N. Yu. Selivanova, M. V. Shamolin, “Local solvability of some problem with free border”, Vestnik SamGU, 2011, no. 8(89), 86–94
323.
M. V. Shamolin, “Dvizhenie tverdogo tela v soprotivlyayuscheisya srede”, Matem. modelirovanie, 23:12 (2011), 79–104 (cited: 5) (cited: 6)
2010
324.
M. V. Shamolin, “A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field”, Russian Math. Surveys, 65:1 (2010), 183–185 (cited: 1) (cited: 1) (cited: 1)
325.
M. V. Shamolin, “New cases of integrability in the spatial dynamics of a rigid body”, Doklady Physics, 55:3 (2010), 155–159
M. V. Shamolin, “Integriruemost i neintegriruemost v transtsendentnykh funktsiyakh dinamicheskikh sistem”, Voronezhskaya zimnyaya matem. shkola S. G. Kreina, Tezisy dokladov (Voronezh, 2010 g.), VorGU, Voronezh, 2010, 159–160
328.
M. V. Shamolin, K zadache o dvizhenii tela s perednim ploskim tortsom v soprotivlyayuscheisya srede, Nauchnyi otchet In-ta mekhaniki MGU im. M. V. Lomonosova № 5052, In-t mekhaniki MGU, Moskva, 2010 , 66 pp.
329.
M. V. Shamolin, “Sluchai polnoi integriruemosti uravnenii prostranstvennogo dvizheniya tverdogo tela v soprotivlyayuscheisya srede”, Tez. dokl. XI Mezhd. konf. “Ustoichivost i kolebaniya nelineinykh sistem upravleniya” (Moskva, 1–4 iyunya 2010 g.), IPU RAN, Moskva, 2010, 429–431
330.
M. V. Shamolin, “Sluchai polnoi integriruemosti uravnenii dvizheniya dinamicheski simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Tez. dokl. Mezhd. konf. po diff. uravneniyam i din. sistemam (Suzdal, 02–07 iyulya 2010), Vlad. gos. univ., Vladimir, 2010, 195
331.
R. R. Aidagulov, M. V. Shamolin, “Integration Formulas of Tenth Order and Higher”, Moscow University Mathematics Bulletin, 65:4 (2010), 135–139
332.
M. V. Shamolin, “Dynamical systems with various dissipation: background, methods, applications”, Proc. of XXXVIII Summer School-Conf. “Advances Problems in Mechanics” (APM 2010) (Saint-Petersburg (Repino), Russia, July 1–5, 2010), CD-Proceedings, IPME, Saint-Petersburg, 2010, 612–621
333.
M. V. Shamolin, “Sluchai polnoi integriruemosti uravnenii prostranstvennoi dinamiki tverdogo tela v soprotivlyayuscheisya srede”, Tez. dokl. nauchn. konf. “Lomonosovskie chteniya-2010”, Sektsiya mekhaniki (Moskva, aprel 2010 g.), MGU, Moskva, 2010, 172http://www.imec.msu.ru/content/lom_reading/2010/lomonosov_2010_mech.pdf
334.
M. V. Shamolin, “Integrability and nonintegrability in terms of transcendental functions in dynamics of a rigid body”, PAMM, 10:1 (2010), 63–64
335.
M. V. Shamolin, “Spatial Motion of a Rigid Body in a Resisting Medium”, Int. Appl. Mech., 46:7 (2010), 835–846
M. V. Shamolin, “Integrability and Nonintegrability in Terms of Transcendental Functions in Dynamics of a Rigid Body”, 81st Annual Meeting of GAMM, CD of Abstracts (Karlsruhe, Germany, March 22–26, 2010), Karlsruhe, Karlsruhe, 2010, 1 p.
338.
Yu. M. Okunev, V. A. Samsonov, B. Ya. Lokshin, M. Z. Dosaev, L. A. Klimina, Yu. D. Selyutskii, O. G. Privalova, M. V. Shamolin, A. I. Kobrin, Problemy upravleniya dvizheniem tel v sploshnoi srede, Nauchnyi otchet In-ta mekhaniki MGU im. M. V. Lomonosova № 5103, In-t mekhaniki MGU, Moskva, 2010 , 42 pp.
2012
339.
V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530 (cited: 4) (cited: 4) (cited: 12) (cited: 12)
2009
340.
D. V. Georgievskii, M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov”, Journal of Mathematical Sciences, 161:5 (2009), 603–614 (cited: 3) (cited: 11)
341.
M. V. Shamolin, “On Trajectories Going to Infinity for Dynamical Systems on the Plane”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 161:5 (2009), 606
342.
M. V. Shamolin, “On the Integrability of Certain Classes of Dynamical Systems”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 161:5 (2009), 609–610
343.
M. V. Shamolin, “On Stability of Certain Regimes of Rigid Body Motion in a Resisting Medium”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal ofMathematical Sciences, 161:5 (2009), 610
344.
M. V. Shamolin, “Methods for Analyzing Variable Dissipation Dynamical Systems”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 161:5 (2009), 613
345.
R. R. Aidagulov, M. V. Shamolin, “Groups of Colors”, Journal of Mathematical Sciences, 161:5 (2009), 615–627
346.
M. V. Shamolin, “On Integrability in Elementary Functions of Certain Clases of Nonconservative Dynamical Systems”, Journal of Mathematical Sciences, 161:5 (2009), 734–778 (cited: 3) (cited: 7)
347.
M. V. Shamolin, “Nekotorye sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, V Polyakhovskie chteniya, Tr. Mezhd. nauchn. konf. po mekhan. (Sankt-Peterburg, 3–6 fevralya 2009 g.), Spb. un-t, Sankt-Peterburg, 2009, 144–150
348.
M. V. Shamolin, “New cases of full integrability in dynamics of a dynamically symmetric four-dimensional solid in a nonconservative field”, Doklady Physics, 54:3 (2009), 155–159 (cited: 7) (cited: 5) (cited: 5) (cited: 7)
349.
M. V. Shamolin, “Sluchai integriruemosti uravnenii dvizheniya chetyrekhmernogo tverdogo tela v nekonservativnom pole sil”, “Sovremennye problemy matematiki, mekhaniki i ikh prilozhenii”, Mater. mezhd. konf., posvyasch. 70-letiyu rektora MGU akad. V. A. Sadovnichego (Moskva, 30 marta – 2 aprelya 2009), Universitetskaya kniga, Moskva, 2009, 233
M. V. Shamolin, “Sistemy s peremennoi dissipatsiei: metody, podkhody, prilozheniya”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical Systems Modelling and Stability Investigation). Intern. Conf., Thes. of. Conf. Rep. (Kiev, Ukraina, 27–29 maya 2009 g.), Kyiv, Kyiv, 2009, 163
M. V. Shamolin, “Dynamical systems with variable dissipation: methods and applications”, Proc. of 10th Conf. on Dynamical Systems (Theory and Applications) (DSTA 2009) (Lodz, Poland, December 7–10, 2009), Tech. Univ. Lodz, Lodz, 2009, 91–204
356.
M. V. Shamolin, “Novye sluchai polnoi integriruemosti v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. nauchn. konf. “Lomonosovskie chteniya-2009”, Sektsiya mekhaniki (Moskva, aprel 2009 g.), MGU, Moskva, 2009, 153–154http://www.imec.msu.ru/content/lom_reading/2009/lomonosov_2009_mech.pdf
2010
357.
D. V. Georgievskii, M. V. Shamolin, “$\Pi$-Theorem of Dimension Theory (Devoted to the 100th Anniversary of Its Proof)”, Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Topical Problems of Geometry and Mechanics” Named after V. V. Trofimov, Journal of Mathematical Sciences, 165:6 (2010), 607 (cited: 3)
358.
M. V. Shamolin, “New Integrability Cases in Four-Dimensional Rigid-Body Dynamics in a Nonconservative Force Field”, Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Topical Problems of Geometry and Mechanics” Named after V. V. Trofimov, Journal of Mathematical Sciences, 165:6 (2010), 610–611
359.
M. V. Shamolin, “Complete Integrability Cases in Dynamics of a Symmetric, Four-Dimensional Rigid Body in a Nonconservative Field”, Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Topical Problems of Geometry and Mechanics” Named after V. V. Trofimov, Journal of Mathematical Sciences, 165:6 (2010), 614
360.
R. R. Aidagulov, M. V. Shamolin, “Pseudodifferential Operators in the Theory of Multiphase, Multi-Rate Flows”, Journal of Mathematical Sciences, 165:6 (2010), 616–636
361.
R. R. Aidagulov, M. V. Shamolin, “Averaging Operators and Real Equations of Hydromechanics”, Journal of Mathematical Sciences, 165:6 (2010), 637–653 (cited: 1) (cited: 2)
362.
Yu. M. Okunev, M. V. Shamolin, “On Integrability in Elementary Functions of Certain Classes of Complex Nonautonomous Equations”, Journal of Mathematical Sciences, 165:6 (2010), 732–742 (cited: 1) (cited: 1)
363.
M. V. Shamolin, “Classification of Complete Integrability Cases in Four-dimensional Symmetric Rigid-body Dynamics in a Nonconservative Field”, Journal of Mathematical Sciences, 165:6 (2010), 743–754 (cited: 2) (cited: 9)
2009
364.
M. V. Shamolin, “Stability of rectilinear translational motion of a rigid body in resisting medium”, Int. Appl. Mech., 45:6 (2009), 680–692 (cited: 1) (cited: 2)
365.
M. V. Shamolin, “The various cases of complete integrability in dynamics of a rigid body interacting with a medium”, Multibody Dynamics, ECCOMAS Thematic Conf., CD-Proceedings (Warsaw, Poland, June 29 – July 2, 2009), Polish Acad. Sci., Warsaw, 2009, 20 p.
366.
M. V. Shamolin, “Dynamical systems with variable dissipation: methods, and applications”, Proggramme/Abstract/Participants of XVI International Congress on Mathematical Physics (ICMP09) (Prague, Czech Rep., August 3–8, 2009), Prague, Prague, 2009, 33
367.
M. V. Shamolin, “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, PAMM, 9:1 (2009), 139–140
368.
P. A. Komarov, M. V. Shamolin, “Optimizatsiya razmescheniya neskolkikh kosmicheskikh apparatov na rakete-nositele”, Tr. Shestogo Mezhd. Aerokosm. Kongr. IAC'09 (Moskva, 23–27 avgusta 2009 g.), Moskva, Moskva, 2009, 132–135
369.
M. V. Shamolin, Vysshaya matematika, Seriya “Uchebnik dlya vuzov”, Ekzamen, Moskva, 2009 , 912 pp.
370.
M. V. Shamolin, “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium”, 80th Annual Meeting of GAMM, CD of Abstracts (Danzig, Poland, February 9–13, 2009), Danzig, Poland, Danzig, 2009, 1 p.
2010
371.
D. V. Georgievskii, M. V. Shamolin, “Sessions of the Workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, “Topical Problems of Geometry and Mechanics” Named after V. V. Trofimov”, Journal of Mathematical Sciences, 165:6 (2010), 607–615 (cited: 2) (cited: 3)
2009
372.
M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications”, J. Math. Sci., 162:6 (2009), 741–908 (cited: 4) (cited: 4) (cited: 12)
2008
373.
M. V. Shamolin, “Three-parametric family of phase portraits in dynamics of a solid interacting with a medium”, Doklady Physics, 53:1 (2008), 23–28
374.
M. V. Shamolin, “Novel integrable cases in the dynamics of a body interacting with a medium taking into account dependence of the moment of the resistance force on the angular velocity”, J. Appl. Math. Mech., 72:2 (2008), 169–179 (cited: 3)
375.
M. V. Shamolin, “Metody analiza dinamicheskikh sistem s opredelennoi gruppoi simmetrii”, «Differentsialnye uravneniya i topologiya», Mezhd. konf. posvyasch. 100-letiyu so dnya rozhd. L. S. Pontryagina. Tez. dokl. (Moskva, 17–22 iyunya 2008 g.), MAKS Press, Moskva, 2008, 208–209
376.
M. V. Shamolin, “Kachestvennye metody analiza sistem s peremennoi dissipatsiei v dinamike”, Mezhd. konf. «Shestye Okunevskie chteniya», Materialy dokladov (Sankt-Peterburg, 23–27 iyunya 2008 g.), III, Balt. gos. un-t, Sankt-Peterburg, 2008, 34–39
377.
M. V. Shamolin, “Integrability of Some Classes of Dynamic Systems in Terms of Elementary Functions”, Moscow University Mechanics Bulletin, 63:3 (2008), 53–59 (cited: 1)
378.
M. V. Shamolin, “Novyi integriruemyi sluchai v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole sil”, Mater. Voronezhskoi ves. matem. shk. “Pontryaginskie chteniya-XIX” (Voronezh, mai 2008 g.), Voronezhskii gos. un-t, Voronezh, 2008, 231–232
379.
M. V. Shamolin, “Metody analiza dinamicheskikh sistem so znakoperemennoi dissipatsiei”, Tez. dokl. Mezhd. konf. po diff. uravneniyam i din. sistemam (Suzdal, 26 iyunya – 2 iyulya 2008 g.), Vlad. gos. univ., Vladimir, 2008, 259–260
380.
M. V. Shamolin, “Methods of analysis of dynamic systems with various dissipation in dynamics of a rigid body”, ENOC-2008, CD-Proceedings (Saint Petersburg, June 30 – July 4, 2008), Saint Petersburg, Saint Petersburg, 2008, 6 p.http://lib.physcon.ru/doc?id=9aefcd2dd313
381.
M. V. Shamolin, “Sistemy so znakoperemennoi dissipatsiei v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. nauchn. konf. “Lomonosovskie chteniya-2008”, Sektsiya mekhaniki (Moskva, aprel 2008 g.), MGU, Moskva, 2008, 159–160http://www.imec.msu.ru/content/lom_reading/2008/lomonosov_2008_mech.pdf
382.
M. V. Shamolin, “Metody analiza sistem s peremennoi dissipatsiei v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl IX Krymskoi Mezhdun. Matem. shk. “Metod funktsii Lyapunova i ego prilozheniya” (Alushta, Krym, 15–20 sentyabrya 2008 g.), Tavr. natsion. un-t, Simferopol, 2008, 181–182
383.
M. V. Shamolin, “Novye sluchai polnoi integriruemosti v dinamike simmetrichnogo chetyrekhmernogo tverdogo tela v nekonservativnom pole”, Mater. mezhd. nauchn. konf. “Sovremennye problemy matematiki, mekhaniki, informatiki”, posv. 85-letiyu so dnya rozhd. L. A. Tolokonnikova (Tula, 17–21 noyabrya 2008 g.), Grif i K, Tula, 2008, 317–320
384.
M. V. Shamolin, “Some methods of analysis of the dynamis systems with various dissipation in dynamics of a rigid body”, PAMM, 8:1 (2008), 10137–10138
385.
M. V. Shamolin, “Some Methods of Analysis of the Dynamic Systems with the Various Dissipation”, 79th Annual Meeting of GAMM, CD of Abstracts (Bremen, Germany, March 31 – April 4, 2008), University of Bremen, Bremen, 2008, 2 pp.
386.
R. R. Aidagulov, M. V. Shamolin, “Manifolds of Continuous Structures”, Journal of Mathematical Sciences, 154:4 (2008), 523–538 (cited: 1) (cited: 1)
387.
R. R. Aidagulov, M. V. Shamolin, “General Spectral Approach to the Dynamics of Continuum”, Journal of Mathematical Sciences, 154:4 (2008), 502–522
388.
R. R. Aidagulov, M. V. Shamolin, “Archimedean Uniform Structures”, Journal of Mathematical Sciences, 154:4 (2008), 496–501
2007
389.
M. V. Shamolin, “A case of complete integrability in the dynamics on the tangent bundle of a two-dimensional sphere”, Russian Math. Surveys, 62:5 (2007), 1009–1011 (cited: 1)
2008
390.
D. V. Georgievskii, M. V. Shamolin, “Valerii Vladimirovich Trofimov”, Journal of Mathematical Sciences, 154:4 (2008), 449–461 (cited: 2)
2007
391.
R. R. Aidagoulov, M. V. Shamolin, “Phenomenological Approach to the Determination of Interphase Forces”, Doklady Physics, 52:1 (2007), 29–32
2008
392.
D. V. Georgievskii, M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov”, Journal of Mathematical Sciences, 154:4 (2008), 462–495 (cited: 2)
393.
M. V. Shamolin, “Variety of Types of Phase Portraits in the Dynamics of a Rigid Body Interacting with the Medium”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 463–464
394.
D. V. Georgievskii, V. V. Trofimov, M. V. Shamolin, “On Certain Topological Invariants of Flows with Complex Potential”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 465
395.
M. V. Shamolin, D. V. Shebarshov, “Certain Problems of Differential Diagnosis”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 465
396.
I. T. Borisenok, M. V. Shamolin, “Extended Problem of Differential Diagnosis”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 467
397.
M. V. Shamolin, “Integrability of the Problem on the Motion of a Four-Dimensional Rigid Body in a Resisting Medium”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 467–468
398.
R. R. Fakhrutdinova, M. V. Shamolin, “On Conservation of the Phase Volume in Dynamical Systems with Variable Dissipation “with Zero Mean””, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 469
399.
D. V. Georgievskii, M. V. Shamolin, “On the Kinematics of a Rigid Body with a Fixed Point in $\mathbb R^n$”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 471
400.
M. V. Shamolin, “On Taking Account of Rotational Derivatives of the Moment of Aerodynamic Forces on the Motion of a Body in a Resisting Medium”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 473
401.
M. V. Shamolin, “New Integrable Cases in the Dynamics of a Four-Dimensional Rigid Body Interacting with a Medium”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 474
402.
D. V. Georgievskii, M. V. Shamolin, “Generalized Dynamical Euler Equations for a Rigid Body with a Fixed Point in $\mathbb R^n$”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 478
403.
D. V. Georgievskii, M. V. Shamolin, “First Integrals of Equations of Motion of a Generalized Gyroscope in the n-Dimensional Space”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 478
404.
M. V. Shamolin, “On Integrability in Transcendental Functions”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 482
405.
S. A. Agafonov, D. V. Georgievskii, M. V. Shamolin, “Certain Urgent Problems of Geometry and Mechanics”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 483
406.
M. V. Shamolin, “On Integrability of the Motion of a Four-Dimensional Rigid Body-Pendulum Located in the Flow of an Incoming Medium”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 485–486
407.
M. V. Shamolin, “Integrability in Elementary Functions of Systems with Variable Dissipation”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 487
408.
M. V. Shamolin, “Integrability of Strongly Nonconservative Systems in Trancendental Elementary Functions”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 489
409.
M. V. Shamolin, “On the Motion of a Rigid Body in a Resisting Medium with Account Taken of Rotational Derivatives of the Moment of Aerodynamic Forces with respect to the Angular Velocity”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 493
410.
M. V. Shamolin, “Influence of Rotational Derivatives of the Moment of Forces of Action of a Medium with respect to the Angular Velocity of a Rigid Body on Its Motion”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 493–494
411.
M. V. Shamolin, “On the work of the All-Russia Conference “Differential Equations and Their Applications,” Samara, June 27 – July 2, 2005”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 494
2007
412.
N. Yu. Selivanova, M. V. Shamolin, “Rasshirennaya model Kana–Khillarda i nekotorye ee resheniya”, Mater. Voronezhskoi ves. matem. shk. “Pontryaginskie chteniya-XVIII” (Voronezh, mai 2007 g.), Voronezh. gos. un-t, Voronezh, 2007, 145–146
413.
M. V. Shamolin, “Ob integriruemosti v elementarnykh funktsiyakh nekotorykh klassov nekonservativnykh dinamicheskikh sistem”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical Systems Modelling and Stability Investigation). Intern. Conf., Thes. of. Conf. Rep. (Kiev, Ukraina, 22–25 maya 2007 g.), Kyiv, Kyiv, 2007, 249
414.
M. V. Shamolin, “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole sil”, “Nelineinyi dinamicheskii analiz-2007”, Tez. dokl. mezhdun. kongr. (Sankt-Peterburg, 4–8 iyunya 2007 g.), Sankt-Pet. gos. un-t, Sankt-Peterburg, 2007, 178
415.
M. V. Shamolin, “Sluchai polnoi integriruemosti v elementarnykh funktsiyakh nekotorykh klassov nekonservativnykh dinamicheskikh sistem”, Tez. dokl. Mezhdun. konf. “Klassicheskie zadachi dinamiki tverdogo tela” (Donetsk, Ukraina, 9–13 iyunya 2007 g.), In-t prikl. matem. i mekhan. NAN Ukrainy, Donetsk, 2007, 81–82
416.
M. V. Shamolin, “4D rigid body and some cases of integrability”, Abstracts of ICIAM07 (Zurich, Switzerland, June 16–20, 2007), ETH Zurich, Zurich, 2007, 311
417.
M. V. Shamolin, “The cases of complete integrability in dynamics of a rigid body interacting with a medium”, Book of Abs. of Int. Conf. on the Occasion of the 150th Birthday of A. M. Lyapunov (Kharkiv, Ukraine, June 24–30, 2007), Verkin Inst. Low Temper. Physics Engineer. NASU, Kharkiv, 2007, 147–148
418.
M. V. Shamolin, “On the problem of a symmetric body motion in a resisting medium”, Book of Abst. of EMAC-2007 (Hobart, Australia, July 1–4, 2007), Univ. Tasmania, Hobart, 2007, 25
419.
M. V. Shamolin, “Complete Integrability of the Equations of Motion of a Spatial Pendulum in a Medium Flow with Rotational Derivatives of the Torque Produced by the Medium Taken into Account”, Mechanics of Solids, 42:3 (2007), 491–496
420.
M. V. Shamolin, “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela v nekonservativnom pole sil”, Tez. dokl. Mezhdun. konf. “Analiz i osobennosti”, posvyasch. 70-letiyu V. I. Arnolda (Moskva, 20–24 avgusta 2007 g.), MIAN, Moskva, 2007, 110–112
421.
M. V. Shamolin, “The cases of integrability in 2D, 3D- and 4D-rigid body”, Abstr. of Short Commun. and Post. of Int. Conf. “Dynamical Methods and Mathematical Modelling” (Valladolid, Spane, September 18–22, 2007), ETSII, Valladolid, 2007, 31
422.
M. V. Shamolin, “Sluchai polnoi integriruemosti v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. Vseros. konf. “Sovremennye problemy mekhaniki sploshnoi sredy” pamyati L. I. Sedova v svyazi so 100-let. so dnya rozhd. (Moskva, 12–14 noyabrya 2007 g.), MIAN, Moskva, 2007, 166–167
423.
M. V. Shamolin, “Ob ustoichivosti odnogo rezhima dvizheniya tverdogo tela v soprotivlyayuscheisya srede”, Tez. dokl. nauchn. konf. “Lomonosovskie chteniya-2007”, Sektsiya mekhaniki (Moskva, aprel 2007 g.), MGU, Moskva, 2007, 153
424.
M. V. Shamolin, “The cases of integrability in terms of transcendental functions in dynamics of a rigid body interacting with a medium”, Proc. of 9th Conf. on Dynamical Systems (Theory and Applications) (DSTA 2007) (Lodz, Poland, December 17–20, 2007), 1, Tech. Univ. Lodz, Lodz, 2007, 415–422
425.
M. V. Shamolin, “Some model problems of solid dynamics at its interaction with a medium”, Int. Appl. Mech., 43:10 (2007), 1107–1122 (cited: 4) (cited: 4) (cited: 5)
426.
M. V. Shamolin, Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela, Ekzamen, Moskva, 2007 , 352 pp.
427.
M. V. Shamolin, Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Izdanie 2-e, pererabotannoe i dopolnennoe, Ekzamen, Moskva, 2007 , 320 pp.
2008
428.
D. V. Georgievskii, V. V. Trofimov, M. V. Shamolin, “Geometry and mechanics: problems, approaches, and methods”, Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University “Urgent problems of geometry and mechanics” named after V. V. Trofimov, Journal of Mathematical Sciences, 154:4 (2008), 462
2006
429.
M. V. Shamolin, “Sistemy s peremennoi dissipatsiei v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Chetvertye Polyakhovskie chteniya, Tez. dokl. Mezhd. nauchn. konf. po mekhan. (Sankt-Peterburg, 7–10 fevralya 2006 g.), VVM, Sankt-Peterburg, 2006, 86
430.
M. V. Shamolin, “Almost conservative systems in dynamics of a rigid body”, 77th Annual Meeting of GAMM, Book of Abstracts (Berlin, Germany, March 27–31, 2006), Technische Univ. Berlin, Berlin, 2006, 74
431.
M. V. Shamolin, Modelnaya zadacha o dvizhenii tela v soprotivlyayuscheisya srede s uchetom zavisimosti momenta sily soprotivleniya ot uglovoi skorosti, Nauchnyi otchet In-ta mekhaniki MGU im. M. V. Lomonosova № 4818, In-t mekhaniki MGU, Moskva, 2006 , 44 pp.
432.
M. V. Shamolin, “On the problem of three-dimensional deceleration of a rigid body in a resistant medium”, Mechanics of Solids, 41:3 (2006), 34–44
M. V. Shamolin, “O sluchae polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela”, Tez. dokl. mezhd. konf. po diff. uravn. i din. sist. (Vladimir, 10–15 iyulya 2006 g.), Vlad. gos. un-t, Vladimir, 2006, 226–228
435.
M. V. Shamolin, “K prostranstvennoi zadache vzaimodeistviya tverdogo tela s soprotivlyayuscheisya sredoi”, IX Vseross. s'ezd po teoret. i prikl. mekh., Annotatsii dokladov (Nizhnii Novgorod, 22–28 avgusta 2006 g.), I, Nizhegorodskii gosun-t im. N. I. Lobachevskogo, Nizhnii Novgorod, 2006, 120
436.
M. V. Shamolin, “Prostranstvennaya zadacha o dvizhenii tverdogo tela v soprotivlyayuscheisya srede”, VIII Krymskaya mezhd. matem. shkola “Metod funktsii Lyapunova i ego prilozheniya”, Tezisy dokladov (Krym, Alushta, 10–17 sentyabrya 2006 g.), DiAiPi, Simferopol, 2006, 184
2005
437.
M. V. Shamolin, “An integrable case of dynamical equations on $so(4)\times\mathbb R^4$”, Russian Math. Surveys, 60:6 (2005), 1245–1246 (cited: 1) (cited: 1) (cited: 2)
438.
M. V. Shamolin, “Mathematical model of interaction of a rigid body with a resisting medium in a jet flow”, 76 Annual Sci. Conf. (GAMM), Abstracts (Luxembourg, March 28 – April 1, 2005), 1, Univ. du Luxembourg, Luxembourg, 2005, 94–95
439.
M. V. Shamolin, “O dvizhenii tverdogo tela v soprotivlyayuscheisya srede pri uchete vraschatelnykh proizvodnykh momenta aerodinamicheskikh sil po uglovoi skorosti”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical Systems Modelling and Stability Investigation). Nauchn. konf. (Kiev, Ukraina, 23–25 maya 2005 g.), Kyiv, Kyiv, 2005, 351
440.
M. V. Shamolin, “Sluchai polnoi integriruemosti v dinamike chetyrekhmernogo tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. Mezhd. konf. “Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz”, posv. 100-letiyu S. M. Nikolskogo (Moskva, 23–29 maya 2005 g.), Matem. inst. im. V. A. Steklova RAN, Moskva, 2005, 244
441.
R. R. Aǐdagulov, M. V. Shamolin, “A refinement of Conveys algorithm”, Moscow University Mathematics Bulletin, 60:3 (2005), 34–35 (cited: 2)
442.
M. V. Shamolin, “Some cases of Integrability in 3D dynamics of a rigid body interacting with a medium”, Book of Abst. IMA Int. Conf. «Recent Advances in Nonlinear Mechanics» (Aberdeen, Scotland, August 30 – September 1, 2005), IMA, Aberdeen, 2005, 112
443.
M. V. Shamolin, “Ob odnom integriruemom sluchae v dinamike na $so(4)\times\mathbb R^4$”, Tez. dokl. Vseross. konf. «Differentsialnye uravneniya i ikh prilozheniya» (SamDif-2005) (Samara, 27 iyunya – 2 iyulya 2005 g.), Universgrupp, Samara, 2005, 97–98
444.
M. V. Shamolin, “The case of complete integrability in three-dimensional dynamics of a rigid body interacting with a medium with the inclusion of rotary derivatives of the force moment with respect to the angular velocity”, Doklady Physics, 50:8 (2005), 414–418
445.
M. V. Shamolin, “Comparison of Jacobi integrable cases of plane and spatial motion of a body in a medium at streamlining”, J. Appl. Math. Mech., 69:6 (2005), 900–906 (cited: 2)
446.
M. V. Shamolin, “O dvizhenii tela v soprotivlyayuscheisya srede pri uchete vraschatelnykh proizvodnykh momenta aerodinamicheskikh sil po uglovoi skorosti”, Tez. dokl. nauchn. konf. “Lomonosovskie chteniya-2005”, Sektsiya mekhaniki (aprel 2005 g.), MGU, Moskva, 2005, 182
447.
M. V. Shamolin, “Dinamicheskie sistemy s peremennoi dissipatsiei v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Differentsialnye uravneniya i sistemy kompyuternoi algebry (Differential equations and computer algebra systems (DE CAS'2005)), Materialy Mezhdunarodnoi konferentsii v 2-kh ch. (Brest, Belorussiya, 5–8 oktyabrya 2005 g.), 1, BGPU, Minsk, 2005, 231–233
448.
M. V. Shamolin, “Structural stable vector fields in rigid body dynamics”, Proc. of 8th Conf. on Dynamical Systems (Theory and Applications) (DSTA 2005) (Lodz, Poland, December 12–15, 2005), 1, Tech. Univ. Lodz, Lodz, 2005, 429–436
449.
M. V. Shamolin, “Integriruemost v transtsendentnykh funktsiyakh v dinamike tverdogo tela”, Mat. konf. “Sovremennnye problemy prikladnoi matematiki i matematicheskogo modelirovaniya” (Voronezh, 12–17 dekabrya 2005 g.), Voronezhskaya gos. akademiya, Voronezh, 2005, 240
2004
450.
M. V. Shamolin, “Geometric representation of motion in a problem on interaction of a body with a medium”, Int. Appl. Mech., 40:4 (2004), 480–486 (cited: 1) (cited: 1) (cited: 1) (cited: 1) (cited: 1)
451.
M. V. Shamolin, “Integriruemost nekonservativnykh sistem v transtsendentnykh elementarnykh funktsiyakh”, Materialy konf. “X Mizhd. nauk. konf. im. akad. M. Kravchuka” (Kiev, Ukraina, 13–15 maya 2004 g.), Zadruga, Kiev, 2004, 279
452.
M. V. Shamolin, “Some cases of integrability in dynamics of a rigid body interacting with a resisting medium”, Tez. dokl. Mezhd. konf. po diff. uravneniyam i din. sistemam (Suzdal, 5–10 iyulya 2004 g.), Vlad. gos. univ., Vladimir, 2004, 296–298
453.
M. V. Shamolin, Metody analiza klassov nekonservativnykh sistem v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi, Doktorskaya dissertatsiya, MGU, Moskva, 2004 , 329 pp.
454.
M. V. Shamolin, Nekotorye zadachi differentsialnoi i topologicheskoi diagnostiki, Ekzamen, Moskva, 2004 , 256 pp.
455.
M. V. Shamolin, “Solving the problem of differential diagnostics by the methods of statistical tests”, GAMM 75th Annual Meeting, Book of Abstracts (Dresden, March 21–27, 2004), Technische Univ. Dresden, Dresden, 2004, 197
2003
456.
E. I. Suvorova, M. V. Shamolin, “Topograficheskie sistemy Puankare i sistemy sravneniya vysshikh poryadkov”, Materialy konf. “Sovremennye metody teorii funktsii i smezhnye problemy” (Voronezh, 26 yanvarya – 2 fevralya 2003 g.), Voronezhskii gos. un-t, Voronezh, 2003, 251–252
457.
M. V. Shamolin, “Ob odnoi prostranstvennoi zadache o dvizhenii tverdogo tela v soprotivlyayuscheisya srede”, Tez. dokl. mezhd. nauchn. konf. po mekh. “Treti Polyakhovskie chteniya” (Sankt-Peterburg, 4–6 fevralya 2003 g.), NIIKh S.-Pb. un-ta, Sankt-Peterburg, 2003, 170–171
458.
M. V. Shamolin, “Integrability and Nonintegrability in Terms of Transcendental Functions”, Book of Abs. of Annual Scient. Conf. GAMM 2003 (Abano Terme-Padua, Italy, March 24–28, 2003), Univ. of Padua, Padua, 2003, 77
459.
M. V. Shamolin, “Integriruemost v transtsendentnykh funktsiyakh v dinamike tverdogo tela”, Tez. dokl. nauchn. konf. “Lomonosovskie chteniya-2003”, Sektsiya mekhaniki (Moskva, 17–27 aprelya 2003 g.), MGU, Moskva, 2003, 130
460.
M. V. Shamolin, “Ob integriruemosti nekonservativnykh dinamicheskikh sistem v transtsendentnykh funktsiyakh”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical Systems Modelling and Stability Investigation), Nauchn. konf. (Kiev, Ukraina, 27–30 maya 2003 g.), Kyiv, Kyiv, 2003, 377
461.
M. V. Shamolin, “Global Structural Stability in Dynamics of a Rigid Body Interacting with a Medium”, 5th ICIAM (Sydney, Australia, 7–11 July, 2003), Univ. of. Technology, Sydney, 2003, 306
462.
M. V. Shamolin, “Some questions of differential and topological diagnostics”, Book of Abstracts of 5th European Solid Mech. Conf. (ESMC-5) (Thessaloniki, Greece, Aug. 17–22, 2003), Aristotle Univ. Thes. (AUT), European Mech. Sc. (EUROMECH), Thessaloniki, 2003, 301
463.
D. V. Georgievskii, M. V. Shamolin, “First integrals of motion equations of a generalized gyroscope in $\Bbb R^n$”, Moscow University Mathematics Bulletin, 58:5 (2003), 25–29 (cited: 16)
2002
464.
M. V. Shamolin, “Integration of certain classes of non-conservative systems”, Russian Math. Surveys, 57:1 (2002), 161–162
465.
M. V. Shamolin, “Foundations in diferential and topological diagnostics”, Book of Abs. of Annual Scient. Conf. GAMM 2002 (Augsburg, Germany, March 25–28, 2002), Univ. of Augsburg, Augsburg, 2002, 154
466.
D. V. Georgievskii, M. V. Shamolin, “Generalized Euler's Equations Describing the Motion of a Rigid Body with a Fixed Point in $\mathbb R^n$”, Doklady Physics, 47:4 (2002), 316–318
467.
M. V. Shamolin, “Novye integriruemye sluchai v dinamike dvukhmernogo, trekhmernogo i chetyrekhmernogo tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. Mezhd. konf. po diff. uravneniyam i din. sistemam (Suzdal, 1–6 iyulya 2002 g.), Vlad. gos. univ., Vladimir, 2002, 142–144
468.
M. V. Shamolin, “Dynamical systems with the variable dissipation in 3D dynamics of a rigid body interacting with a medium”, Book of abstracts of 4th ENOC (Moscow, Russia, August 19–23, 2002), Inst. Probl. Mech. Russ. Acad. Sci., Moscow, 2002, 109
469.
M. V. Shamolin, “Methods of Analysis of Dynamics of a 2D- 3D- or 4D-rigid Body With a Medium”, ICM’2002, Abst. Short Commun. Post. Sess. (Beijing, China, August 20–28, 2002), Higher Education Press, Beijing, 2002, 268
2004
470.
M. V. Shamolin, “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body”, J. Math. Sci., 122:1 (2004), 2841-2915 (cited: 16)
2001
471.
M. V. Shamolin, “Stability of motion of a rigid body spun about its longitudal axis in a resisting medium”, Mechanics of Solids, 36:1 (2001), 155–158
472.
I. T. Borisënok, M. V. Shamolin, “Solving the problem of differential diagnostics by the method of statistical tests”, Moscow University Mechanics Bulletin, 56:1 (2001), 1–3 (cited: 6)
473.
M. V. Shamolin, “Comparison of Some Cases of Integrability in Dynamics of a Rigid Body Interacting with a Medium”, Book of Abs. of Annual Scient. Conf. GAMM 2001 (ETH Zurich, Switzerland, February 12–15, 2001), ETH Zurich, Zurich, 2001, 132
474.
D. V. Georgievskii, V. V. Trofimov, M. V. Shamolin, “Geometriya i mekhanika: zadachi, podkhody, metody”, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 301 (cited: 3)
475.
M. V. Shamolin, “Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 302–303
476.
D. V. Georgievskii, V. V. Trofimov, M. V. Shamolin, “O nekotorykh topologicheskikh invariantakh potokov s kompleksnym potentsialom”, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 305
477.
M. V. Shamolin, D. V. Shebarshov, “Nekotorye zadachi differentsialnoi diagnostiki”, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 305
478.
I. T. Borisenok, M. V. Shamolin, “Rasshirennaya zadacha differentsialnoi diagnostiki”, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 308
479.
M. V. Shamolin, “Integriruemost zadachi o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 309
480.
R. R. Fakhrutdinova, M. V. Shamolin, “O sokhranenii fazovogo ob'ema v dinamicheskikh sistemakh s peremennoi dissipatsiei “s nulevym srednim””, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 311
481.
D. V. Georgievskii, M. V. Shamolin, “O kinematike tverdogo tela s nepodvizhnoi tochkoi v $\mathbb R^n$”, Tez. zased. sem. “Aktualnye problemy geometrii i mekhaniki”, Fundament. i prikl. matem., 7:1 (2001), 315
482.
M. V. Shamolin, “Novye integriruemye sluchai v dinamike chetyrekhmernogo tverdogo tela, vzaimodeistvuyuschego so sredoi”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical Systems Modelling and Stability Investigation). Nauchn. konf. (Kiev, Ukraina, 22–25 maya 2001 g.), Kyiv, Kyiv, 2001, 344
483.
M. V. Shamolin, “Zadacha diagnostirovaniya kak glavnaya zadacha obschei zadachi differentsialnoi diagnostiki”, Book of Abstracts of the Third Int. Conf. “Tools for Mathematical Modelling” (Saint-Petersburg, Russia, June 18–23, 2001), Saint-Petersburg State Tech. Univ., Saint-Petersburg, 2001, 121
484.
M. V. Shamolin, “Integrability cases for equations of the three-dimensional dynamics of a rigid body”, Int. Appl. Mech., 37:6 (2001), 769–777 (cited: 2) (cited: 1) (cited: 1) (cited: 1) (cited: 1)
485.
M. V. Shamolin, “Novye integriruemye po Yakobi sluchai v dinamike dvumernogo, trekhmernogo i chetyrekhmernogo tverdogo tela, vzaimodeistvuyuschego so sredoi”, VIII Vseross. s'ezd po teoret. i prikl. mekhan., Annotatsii dokladov (Perm, 23–29 avgusta 2001 g.), UrO RAN, Ekaterinburg, 2001, 599–600
486.
M. V. Shamolin, “Pattern Recognition in the Model of the Interaction of a Rigid Body with a Resisting Medium”, Col. of Abst. of First SIAM-EMS Conf. “Applied Mathematics in our Changing World” (Berlin, Germany, Sept. 2–6, 2001), Springer-Birkhauser, Berlin, 2001, 66
487.
D. V. Georgievskii, M. V. Shamolin, “Kinematics and mass geometry for a solid body with a fixed point in $\mathbb R^n$”, Doklady Physics, 46:9 (2001), 663–666 (cited: 1) (cited: 1) (cited: 1) (cited: 1) (cited: 1)
488.
M. V. Shamolin, “Complete integrability of equations of motion of a spatial pendulum placed in an incident medium”, Moscow University Mechanics Bulletin, 56:5 (2001), 1–7 (cited: 14)
2003
489.
M. V. Shamolin, “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium”, J. Math. Sci., 114:1 (2003), 919–975
490.
M. V. Shamolin, “Foundations of Differential and Topological Diagnostics”, J. Math. Sci., 114:1 (2003), 976–1024
2000
491.
M. V. Shamolin, “On limit sets of differential equations near singular critical points”, Russian Math. Surveys, 55:3 (2000), 595–596
492.
M. V. Shamolin, “Mathematical modelling of interaction of a rigid body with a medium and new cases of integrability”, ECCOMAS 2000, CD-Proceedings (Barcelona, Spane, September 11–14, 2000), Barcelona, Barcelona, 2000, 11 p.
493.
M. V. Shamolin, “A new family of phase patterns in three-dimensional dynamics of a solid body interacting with matter”, Doklady Physics, 45:4 (2000), 171–174 (cited: 1) (cited: 1) (cited: 1) (cited: 1) (cited: 1)
494.
M. V. Shamolin, “Methods of analysis of dynamics of a rigid body interacting with a medium”, Book of Abstracts of Annual Scient. Conf. GAMM 2000 at the Univ. of Gottingen (Gottingen, Germany, April 2–7, 2000), University of Gottingen, Gottingen, 2000, 144
495.
V. V. Trofimov, M. V. Shamolin, “Dissipativnye sistemy s netrivialnymi obobschennymi klassami Arnolda–Maslova”, Tez. dokl. sem. po vekt. i tenz. an. im. P. K. Rashevskogo, Vestnik MGU. Ser. 1. Matematika, mekhanika, 2000, no. 2, 62
496.
M. V. Shamolin, “O grubosti dissipativnykh sistem i otnositelnoi grubosti sistem s peremennoi dissipatsiei”, Tez. dokl. sem. po vekt. i tenz. an. im. P. K. Rashevskogo, Vestnik MGU. Ser. 1. Matematika, mekhanika, 2000, no. 2, 63
497.
M. V. Shamolin, “Zadacha o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede i odin sluchai integriruemosti”, Book of Abs. Third Int. Conf. “Differential Equations and Applications” (Saint-Petersburg, Russia, June 12–17, 2000), SPbGTU, Sankt-Peterburg, 2000, 198
M. V. Shamolin, “About interaction of a rigid body with a resisting medium under an assumption of a jet flow”, Book of Abst. II (General sessions) of 4th EUROMECH Solid Mech. Conf. (Metz, France, June 26–30, 2000), Univ. of Metz, Metz, 2000, 703
500.
M. V. Shamolin, “Mnogomernye topograficheskie sistemy Puankare i transtsendentnaya integriruemost”, IV Sibirskii Kongress po prikl. i industr. matem. (Novosibirsk, 26 iyunya – 01 iyulya 2000 g.), I, Izd-vo in-ta matem., Novosibirsk, 2000, 25–26
501.
M. V. Shamolin, “New families of many-dimensional phase portraits in dynamics of a rigid body interacting with a medium”, 16th IMACS World Congress, CD-Proceedings (Lausanne, Switzerland, August 21–25, 2000), EPFL, Lausanne, 2000, 3 p.
502.
M. V. Shamolin, “Integriruemost po Yakobi zadachi o dvizhenii chetyrekhmernogo tverdogo tela v soprotivlyayuscheisya srede”, Tez. dokl. Mezhd. konf. po diff. uravneniyam i din. sistemam (Suzdal, 21–26 avgusta 2000 g.), Vlad. gos. univ., Vladimir, 2000, 196–197
503.
M. V. Shamolin, “Sopostavlenie nekotorykh integriruemykh sluchaev iz dvumernoi, trekhmernoi i chetyrekhmernoi dinamiki tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. V Krymskoi Mezhd. Mat. shkoly “Metod funktsii Lyapunova i ego prilozheniya” (MFL-2000) (Krym, Alushta, 5–13 sentyabrya 2000 g.), Simferopol, Simferopol, 2000, 169
504.
M. V. Shamolin, “Ob odnom sluchae integriruemosti po Yakobi v dinamike chetyrekhmernogo tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. Mezhd. konf. po differen. i integr. uravneniyam (Odessa, Ukraina, 12–14 sentyabrya 2000 g.), AstroPrint, Odessa, 2000, 294–295
505.
M. V. Shamolin, “Integrability according to Jacobi in the Problem of Motion of a Four-Dimensional Solid in a Resistant Medium”, Doklady Physics, 45:11 (2000), 632–634 (cited: 15) (cited: 13) (cited: 13) (cited: 18)
2002
506.
M. V. Shamolin, “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, J. Math. Sci., 110:2 (2002), 2528–2557 (cited: 20)
1999
507.
M. V. Shamolin, D. V. Shebarshov, “Nekotorye voprosy geometrii v klassicheskoi mekhanike”, Dep. v VINITI 12.05.99, 1999, 1499-V99 , 19 pp.
508.
I. T. Borisenok, M. V. Shamolin, “Resolving a problem of differential diagnostics”, Fundam. Prikl. Mat., 5:3 (1999), 775–790
509.
M. V. Shamolin, “Robustness of dissipative systems and relative robustness and non-robustness of systems with variable dissipation”, Russian Math. Surveys, 54:5 (1999), 1042–1043 (cited: 1)
510.
M. V. Shamolin, “Metody nelineinogo analiza v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Mezhdunarodnyi kongress “Nelineinyi analiz i ego prilozheniya”, Elektronnyi resurs (Moskva, 1–5 sentyabrya 1998 g.), Moscow, Moscow, 1999, 497–508
511.
M. V. Shamolin, “Integrability in Terms of Transcendental Functions”, Book of Abstracts of GAMM Annual Meeting (Metz, France, April 12–16, 1999), Universite de Metz, Metz, 1999, 144
512.
M. V. Shamolin, “Some classes of particular solutions in the dynamics of a rigid body interacting with a medium”, Mechanics of Solids, 34:2 (1999), 151–160
513.
M. V. Shamolin, D. V. Shebarshov, “Metody resheniya osnovnoi zadachi differentsialnoi diagnostiki”, Dep. v VINITI 12.05.1999, 1999, 1500-V99 , 21 pp.
514.
M. V. Shamolin, “Structural Stability in 3D Dynamics of a Rigid”, WCSMO-3, CD-Proc. (Buffalo, NY, May 17–21, 1999), 2, State Univ. of NY at Buffalo, Buffalo, 1999, 6 p.
515.
M. V. Shamolin, “Semeistva dlinnoperiodicheskikh traektorii v prostranstvennoi dinamike tverdogo tela”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical Systems Modelling and Stability Investigation). Nauchn. konf., Tezisy dokladov (System Modelling) (Kiev, Ukraina, 25–29 maya 1999 g.), Znanie, Kiev, 1999, 60
516.
M. V. Shamolin, D. V. Shebarshov, “Nekotorye zadachi differentsialnoi diagnostiki”, Modelirovanie i issledovanie ustoichivosti sistem (Dynamical Systems Modelling and Stability Investigation). Nauchn. konf., Tezisy dokladov (System Modelling) (Kiev, Ukraina, 25–29 maya 1999 g.), Znanie, Kiev, 1999, 61
517.
M. V. Shamolin, “Properties of Integrability of Systems in Terms of Transcendental Functions”, Final Progr. and Abstracts of Fifth SIAM Conf. on Appl. of Dynamic. Syst. (Snowbird, Utah, USA, May 23–27, 1999), SIAM, Snowbird, 1999, 60
518.
M. V. Shamolin, “Nelineinye dinamicheskie effekty pri prostranstvennom tormozhenii tela v soprotivlyayuscheisya srede”, Tez. dokl. III mezhd. konf. “Chkalovskie chteniya. Inzh.-fiz. probl. aviats. i kosmich. tekhniki” (Egorevsk, 1–4 iyunya 1999 g.), EATK GA, Egorevsk, 1999, 257–258
519.
M. V. Shamolin, “New cases integrable according to Jacobi in the dynamics of a solid body placed into fluid flow”, Doklady Physics, 44:2 (1999), 110–113 (cited: 10) (cited: 17) (cited: 19) (cited: 19)
520.
M. V. Shamolin, “Mathematical Modelling in 3D Dynamics of a Rigid Interacting with a Medium”, Book of Abstracts of the Second Int. Conf. “Tools for Mathematical Modelling” (Saint-Petersburg, Russia, June 14–19, 1999), Saint-Petersburg State Tech. Univ., Saint-Petersburg, 1999, 122–123
521.
M. V. Shamolin, “Some properties of transcendental integrable dynamical systems”, Book of Abstracts of EQUADIFF 10 (Berlin, Germany, August 1–7, 1999), Free Univ. of Berlin, Berlin, 1999, 286–287
522.
M. V. Shamolin, “Methods of analysis of a deceleration of a rigid in 3D medium”, Contributed abstracts of 3rd ENOC (Copenghagen (Lyngby), Denmark, August 8–12, 1999), Tech. Univ. of Denmark, Copenghagen (Lyngby), 1999, without pages
523.
M. V. Shamolin, “Long-Periodic Trajectories in Rigid Body Dynamics”, Sixth Colloquium on the Qualitative Theory of Differential Equations (Szeged, Hungary, August 10–14, 1999), Bolyai Institute, Szeged, 1999, 47
524.
M. V. Shamolin, “New Families of the Non-Equivalent Phase Portraits in 3D Rigid Body Dynamics”, Abstracts of Second Congress ISAAC 1999 (Fukuoka, Japan, August 16–21, 1999), Fukuoka Ins. of Tech., Fukuoka, 1999, 205–206
525.
I. T. Borisenok, M. V. Shamolin, “Suschestvovanie resheniya obschei zadachi differentsialnoi diagnostiki”, Tez. dokl. Konf., posvyasch. 40-letiyu Instituta mekhaniki MGU (Moskva, 22–26 noyabrya 1999 g.), MGU, Moskva, 1999, 259–260
1998
526.
M. V. Shamolin, “On integrability in transcendental functions”, Russian Math. Surveys, 53:3 (1998), 637–638 (cited: 10) (cited: 10)
527.
M. V. Shamolin, “Many-dimensional topographical Poincare systems in rigid body dynamics”, Abstracts of GAMM Wissenschaftliche Jahrestangung'98 (Bremen, Germany, April 6–9, 1998), Universitat Bremen, Bremen, 1998, 128
528.
I. T. Borisenok, M. V. Shamolin, “Suschestvovanie i edinstvennost resheniya obschei zadachi differentsialnoi diagnostiki”, Tez. dokl. 5 Mezhd. sovesch.-sem. “Inzhenerno-fizicheskie problemy novoi tekhniki” (Moskva, 19–22 maya 1998 g.), MGTU, Moskva, 1998, 6–7
529.
M. V. Shamolin, “Kachestvennye i chislennye metody v nekotorykh zadachakh prostranstvennoi dinamiki tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tez. dokl. 5 Mezhd. sovesch.-sem. “Inzhenerno-fizicheskie problemy novoi tekhniki” (Moskva, 19–22 maya 1998 g.), MGTU, Moskva, 1998, 154–155
530.
M. V. Shamolin, “Nekotorye zadachi prostranstvennoi dinamiki tverdogo tela, vzaimodeistvuyuschego so sredoi v usloviyakh kvazistatsionarnosti”, Tez. dokl. Vseros. nauchn.-tekhn. konf. molodykh uchenykh “Sovremennye problemy aerokosmicheskoi nauki” (g. Zhukovskii, 27–29 maya 1998 g.), TsAGI, Moskva, 1998, 89–90
531.
M. V. Shamolin, “Absolyutnaya i otnositelnaya strukturnaya ustoichivost v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Tr. Mezhd. konf. “Matematika v industrii” (ICIM-98) (Taganrog, 29 iyunya – 3 iyulya 1998 g.), TGPI, Taganrog, 1998, 332–333
532.
M. V. Shamolin, D. V. Shebarshov, “Lagrange Tori and Equation of Hamilton–Jacobi”, Book of Abstracts of Conference PDE Prague'98, Partial Differential Equations: theory and numerical solutions (Praha, Czech Rep., August 10–16, 1998), Charles University, Praha, 1998, 88
533.
M. V. Shamolin, “Semeistva trekhmernykh fazovykh portretov v prostranstvennoi dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, III Mezhdunarodnyi simpozium po klassicheskoi i nebesnoi mekhanike, Tezisy dokladov (Velikie Luki, 23–27 avgusta 1998 g.), VTs RAN, Moskva–Velikie Luki, 1998, 165–167
534.
M. V. Shamolin, “New two-parametric families of the phase portraits in three-dimensional rigid body dynamics”, Mezhdunarodnaya konf., posvyaschennaya 90-letiyu so dnya rozhd. L. S. Pontryagina, Tezisy dokladov. Differentsialnye uravneniya (Moskva, 31 avgusta – 6 sentyabrya 1998 g.), MGU, Moskva, 1998, 97–99
535.
M. V. Shamolin, “Lyapunov functions method and many-dimensional topographical systems of Poincare in rigid body dynamics”, IV Krymskaya Mezhd. mat. shkola “Metod funktsii Lyapunova i ego prilozheniya”, Tezisy dokladov (Krym, Alushta, 5–12 sentyabrya 1998 g.), Simferopolskii gosuniversitet, Simferopol, 1998, 80
536.
M. V. Shamolin, “A family of phase portraits with limit cycles in the planar dynamics of a rigid body interacting with a medium”, Mechanics of Solids, 33:6 (1998), 21–27
537.
M. V. Shamolin, “Some Classical Problems in a Three Dimensional Dynamics of a Rigid Body Interacting with a Medium”, ICTACEM'98, CD-Proc. (Kharagpur, India, December 1–5, 1998), Indian Inst. of Technology, Kharagpur, 1998, 11 p.
1997
538.
M. V. Shamolin, “Spatial topographical systems of Poincaré and comparison systems”, Russian Math. Surveys, 52:3 (1997), 621–622 (cited: 3) (cited: 4)
539.
M. V. Shamolin, “Three-Dimensional Structural Optimization of Controlled Rigid Motion in a Resisting Medium”, Proceedings of WCSMO-2 (Zakopane, Poland, May 26–30, 1997), Zakopane, Zakopane, 1997, 287–292
540.
B. Ya. Lokshin, Yu. M. Okunev, V. A. Samsonov, M. V. Shamolin, “Nekotorye integriruemye sluchai prostranstvennykh kolebanii tverdogo tela v soprotivlyayuscheisya srede”, Tez. dokl. XXI nauchn. chtenii po kosmonavtike (Moskva, 28–31 yanvarya 1997 g.), IIET RAN, Moskva, 1997, 82–83
541.
M. V. Shamolin, “On the integrable case in the 3D dynamics of a solid interacting with a medium”, Mechanics of Solids, 32:2 (1997), 55–58
542.
M. V. Shamolin, D. V. Shebarshov, “Proektsii lagranzhevykh torov dlya bigarmonicheskogo ostsillyatora na prostranstvo polozhenii i dinamika tverdogo tela, vzaimodeistvuyuschego so sredoi”, Modelirovanie i issledovanie ustoichivosti sistem (Modelling and Investigation of System Stability). Nauchn. konf., Tezisy dokladov (Kiev, Ukraina, 19–23 maya 1997 g.), Znanie, Kiev, 1997, 142
543.
M. V. Shamolin, “Integriruemost po Yakobi zadachi o prostranstvennom mayatnike, pomeschennom v potok nabegayuschei sredy”, Modelirovanie i issledovanie ustoichivosti sistem (Modelling and Investigation of System Stability). Nauchn. konf., Tezisy dokladov (Kiev, Ukraina, 19–23 maya 1997 g.), Znanie, Kiev, 1997, 143
544.
M. V. Shamolin, “Chastichnaya stabilizatsiya vraschatelnykh dvizhenii tela v srede pri svobodnom tormozhenii”, Tez. dokl. Vseros. konf. s mezhdunar. uchastiem “Problemy nebesnoi mekhaniki”, In-t teor. astron.; pod red. A. G. Sokolskogo, A. S. Baranova (Sankt-Peterburg, 3–6 iyunya 1997 g.), ITA RAN, Sankt-Peterburg, 1997, 183–184
545.
V. A. Samsonov, M. V. Shamolin, “Ob ustoichivosti vrascheniya tela pri ego tormozhenii v soprotivlyayuscheisya srede”, VII Chetaevskaya konf. “Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem”, Tezisy dokladov (Kazan, 10–13 iyunya 1997 g.), KGTU, 1997, 24
546.
M. V. Shamolin, “Matematicheskoe modelirovanie dinamiki prostranstvennogo mayatnika, obtekaemogo sredoi”, Tr. VII Mezhd. Simpoziuma "Metody diskretnykh osobennostei v zadachakh matematicheskoi fiziki (Feodosiya, Ukraina, 26–29 iyunya 1997 g.), KhGTU, Kherson, 1997, 153–154
547.
M. V. Shamolin, “Classical problem of a three-dimansional motion of a pendulum in a jet flow”, 3rd EUROMECH Solid Mechanics Conference, Book of Abstracts (Stockholm, Sweden, August 18–22, 1997), Royal Inst. of Technology, Stockholm, 1997, 204
548.
M. V. Shamolin, “Families of three-dimensional phase portraits in dynamics of a rigid body”, EQUADIFF 9, Abstracts, Enlarged Abstracts (Brno, Czech Rep., August 25–29, 1997), Masaryk Univ., Brno, 1997, 76
549.
M. V. Shamolin, “Prostranstvennaya dinamika tverdogo tela, vzaimodeistvuyuschego so sredoi”, Sem. po mekh. sistem i probl. upravleniya dvizh. i navig., Izvestiya RAN. Mekhanika tverdogo tela, 1997, no. 4, 174
550.
M. V. Shamolin, “Kachestvennye metody v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, YSTM'96: “Molodezh i nauka – trete tysyacheletie”, Tr. mezhd. kongressa (Moskva), (Ser. Professional), 2, NTA “APFN”, Moskva, 1997, I-4
1996
551.
M. V. Shamolin, “The definition of relative robustness and a two-parameter family of phase portraits in the dynamics of a rigid body”, Russian Math. Surveys, 51:1 (1996), 165–166 (cited: 1) (cited: 1)
552.
M. V. Shamolin, “Periodic and Poisson stable trajectories of a body moving in a resisting medium”, Mechanics of Solids, 31:2 (1996), 48–55
553.
I. T. Borisenok, M. V. Shamolin, “Algoritmy resheniya zadachi differentsialnoi diagnostiki”, Matem. konf. “Eruginskie chteniya III”, Tezisy dokladov (Brest, Belorussiya, 14–16 maya 1996 g.), Brest, Brest, 1996, 102
554.
M. V. Shamolin, “Prostranstvennye topograficheskie sistemy Puankare i sistemy sravneniya”, Matem. konf. “Eruginskie chteniya III”, Tezisy dokladov (Brest, Belorussiya, 14–16 maya 1996 g.), Brest, Brest, 1996, 107
555.
M. V. Shamolin, “Vvedenie v prostranstvennuyu dinamiku dvizheniya tverdogo tela v soprotivlyayuscheisya srede”, Materialy mezhd. konf. i Chebyshevskikh chtenii, posv. 175-letiyu so dnya rozhd. P. L. Chebysheva (Moskva, 14–19 maya 1996 g.), 2, MGU, Moskva, 1996, 371–373
556.
M. V. Shamolin, “Spisok integralov dinamicheskikh uravnenii v prostranstvennoi zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Modelirovanie i issledovanie ustoichivosti sistem. Nauchn. konf., Tezisy dokladov (Issledovanie sistem) (Kiev, Ukraina, 20–24 maya 1996 g.), Znanie, Kiev, 1996, 142
557.
M. V. Shamolin, “Qualitative methods in interacting with the medium rigid body dynamics”, Abstracts of GAMM Wissenschaftliche Jahrestangung'96 (Prague, Czech Rep., May 27–30, 1996), Karls-Universitat Prag, Prague, 1996, 129–130
558.
M. V. Shamolin, “Relative structural stability and relative structural instability of different degrees in Topological Dynamics”, Abstracts of International Topological Conference Dedicated to P. S. Alexandroff's 100th Birthday “Topology and Applications” (Moscow, May 27–31, 1996), Phasys, Moscow, 1996, 207–208
559.
M. V. Shamolin, “Variety of phase portraits in the dynamics of a solid interacting with a resistant medium”, Physics – Doklady, 41:7 (1996), 320–324 (cited: 6) (cited: 1) (cited: 1)
560.
M. V. Shamolin, “Kachestvennye metody v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, II Sibirskii Kongress po prikl. i industr. matem., Tezisy dokladov (Novosibirsk, 25–30 iyunya 1996 g.), III, Novosibirsk, Novosibirsk, 1996, 267
561.
M. V. Shamolin, “Topographical Poincare systems in many dimensional spaces”, Fifth Colloquium on the Qualitative Theory of Differential Equations (Szeged, Hungary, July 29 – August 2, 1996), Bolyai Institute, Szeged, 1996, 45
562.
M. V. Shamolin, “Ob odnom integriruemom sluchae v dinamike prostranstvennogo dvizheniya tela v soprotivlyayuscheisya srede”, II Simpozium po klassicheskoi i nebesnoi mekhanike, Tezisy dokladov (Velikie Luki, 23–28 avgusta 1996 g.), Moskva–Velikie Luki, Moskva–Velikie Luki, 1996, 91–92
563.
M. V. Shamolin, “Introduction to problem on braking of a body in a resisting medium and new two-parametric family of phase portraits”, Moscow University Mechanics Bulletin, 51:4 (1996), 1–9 (cited: 3)
564.
M. V. Shamolin, “Qualitative Methods in Interacting with the Medium Rigid Body Dynamics”, Abstracts of XIXth ICTAM (Kyoto, Japan, August 25–31, 1996), Kyoto, Kyoto, 1996, 285
1995
565.
V. A. Samsonov, M. V. Shamolin, V. A. Eroshin, V. M. Makarshin, Matematicheskoe modelirovanie v zadache o tormozhenii tela v soprotivlyayuscheisya srede pri struinom obtekanii, Nauchnyi otchet In-ta mekhaniki MGU № 4396, In-t mekhaniki MGU, Moskva, 1995 , 41 pp.
566.
M. V. Shamolin, “Novoe dvuparametricheskoe semeistvo fazovykh portretov s predelnymi tsiklami v dinamike tverdogo tela, vzaimodeistvuyuschego so sredoi”, Modelirovanie i issledovanie ustoichivosti sistem. Nauchn. konf., Tezisy dokladov (Issledovanie sistem) (Kiev, Ukraina, 15–19 maya 1995 g.), Znanie, Kiev, 1995, 125
567.
M. V. Shamolin, “Structural Optimization of the Controlled Rigid Motion in a Resisting Medium”, WCSMO-1, Extended Abstracts. Posters (Goslar, Germany, May 28 – June 2, 1995), Goslar, Goslar, 1995, 18–19
568.
M. V. Shamolin, “Qualitative Methods to the Dynamic Model of an Interaction of a Rigid Body with a Resisting Medium and New Two-Parametric Families of the Phase Portraits”, DynDays'95 (Sixteenth Annual Informal Workshop), Program and Abstracts (Lyon, France, June 28 – July 1, 1995), Lyon, Lyon, 1995, 185
569.
M. V. Shamolin, “New Two-Parameter families of the phase patterns on the problem of a body motion in a resisting midium”, ICIAM95, Book of Abstracts (Hamburg, Germany, July 3–7, 1995), Hamburg-Harburg, Hamburg, 1995, 436
570.
M. V. Shamolin, “Poisson-stable and dense orbits in rigid body dynamics”, 3rd Experimental Chaos Conference, Advance Program (Edinburg, Scotland, August 21–23, 1995), Edinburg, Edinburg, 1995, 114
571.
V. A. Eroshin, V. A. Samsonov, M. V. Shamolin, “A model problem of deceleration of a body in a resisting medium with a jet flow around the body”, Fluid Dynamics, 30:3 (1995), 351–355 (cited: 2) (cited: 2)
572.
M. V. Shamolin, “Otnositelnaya strukturnaya ustoichivost dinamicheskikh sistem zadachi dvizheniya tela v srede”, Analiticheskie, chislennye i eksperimentalnye metody v mekhanike: Sb. nauch. trudov, eds. B. E. Pobedrya i V. V. Kozlov, MGU, Moskva, 1995, 14–19
573.
V. A. Eroshin, V. A. Samsonov, M. V. Shamolin, “Matematicheskoe modelirovanie v zadache o tormozhenii tela v srede pri struinom obtekanii”, Tez. dokl. Chebyshevskikh chtenii, Vestnik MGU. Ser. 1. Matematika, mekhanika, 1995, no. 6, 17
574.
M. V. Shamolin, “Ob otnositelnoi grubosti dinamicheskikh sistem v zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Tez. dokl. Chebyshevskikh chtenii, Vestnik MGU. Ser. 1. Matematika, mekhanika, 1995, no. 6, 17
1994
575.
M. V. Shamolin, “Ob otnositelnoi grubosti dinamicheskikh sistem v zadache o dvizhenii tela v srede pri struinom obtekanii”, Modelirovanie i issledovanie ustoichivosti sistem. Nauchn. konf., Tezisy dokladov (Kiev, Ukraina, 16–20 maya 1994 g.), Znanie, Kiev, 1994, 144–145
576.
M. V. Shamolin, “Relative structural stability on the problem of a body motion in a resisting medium”, ICM94, Abstracts of Short Communications (Zurich, Switzerland, August 3–11, 1994), ETH Zurich, Zurich, 1994, 207
577.
M. V. Shamolin, “New two-parametric family of phase portraits for a body moving in a medium”, Physics – Doklady, 39:8 (1994), 587–590 (cited: 9)
1993
578.
M. V. Shamolin, “Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane”, Moscow University Mechanics Bulletin, 48:1 (1993), 1–6 (cited: 2) (cited: 15)
579.
M. V. Shamolin, “Application of the methods of topographic Poincare systems and comparison systems to some particular systems of differential equations”, Moscow University Mechanics Bulletin, 48:2 (1993), 10–15 (cited: 4)
580.
M. V. Shamolin, “Novoe dvuparametricheskoe semeistvo fazovykh portretov zadachi o dvizhenii tela v soprotivlyayuscheisya srede”, Modelirovanie i issledovanie ustoichivosti sistem. Nauchn. konf., Tezisy dokladov (Kiev, Ukraina, 24–28 maya 1993 g.), 2, Znanie, Kiev, 1993, 62–63
581.
M. V. Shamolin, “Global qualitative analysis of the nonlinear systems on the problem of a body motion in a resisting medium”, Fourth Colloquium on the Qualitative Theory of Differential Equations (Szeged, Hungary, August 18–21, 1993), Bolyai Institute, Szeged, 1993, 54
582.
M. V. Shamolin, “Phase pattern classification for the problem of the motion of a body in a resisting medium in the presence of a linear damping moment”, J. Appl. Math. Mech., 57:4 (1993), 623–632 (cited: 1) (cited: 4) (cited: 4)
583.
M. V. Shamolin, “Otnositelnaya strukturnaya ustoichivost zadachi o dvizhenii tela v soprotivlyayuscheisya srede”, Mekhanika i ee primeneniya. Nauchn. konf., Tezisy dokladov (Tashkent, Uzbekistan, 9–11 noyabrya 1993 g.), TashGU, Tashkent, 1993, 20–21
584.
M. V. Shamolin, S. V. Tsyptsyn, Analiticheskoe i chislennoe issledovanie traektorii dvizheniya tela v soprotivlyayuscheisya srede, Nauchnyi otchet In-ta mekhaniki MGU im. M. V. Lomonosova № 4289, In-t mekhaniki MGU, Moskva, 1993 , 43 pp.
1992
585.
M. V. Shamolin, “On the problem of the motion of a body in a resistant medium”, Moscow University Mechanics Bulletin, 47:1 (1992), 4–10 (cited: 11) (cited: 26)
586.
M. V. Shamolin, “Different topological types of trajectories in the problem of body motion in a resisting medium”, Moscow University Mechanics Bulletin, 47:2 (1992), 13–16 (cited: 11)
1991
587.
V. E. Ryzhova, M. V. Shamolin, “O nekotorykh analogiyakh v zadache o dvizhenii tela v soprotivlyayuscheisya srede”, Sedmoi vsesoyuznyi s'ezd po teoreticheskoi i prikladnoi mekhanike, Annotatsii dokladov (Moskva, 19–21 avgusta 1991 g.), MGU, Moskva, 1991, 305
588.
V. A. Samsonov, M. V. Shamolin, K zadache o tormozhenii tela v srede pri struinom obtekanii, Nauchnyi otchet In-ta mekhaniki MGU im. M. V. Lomonosova № 4141, In-t mekhaniki MGU, Moskva, 1991 , 48 pp.
589.
M. V. Shamolin, Kachestvennyi analiz modelnoi zadachi o dvizhenii tela v srede so struinym obtekaniem, Kandidatskaya dissertatsiya, MGU, Moskva, 1991 , 147 pp.
1990
590.
V. A. Samsonov, M. V. Shamolin, Modelnaya zadacha o dvizhenii tela v srede so struinym obtekaniem, Nauchnyi otchet In-ta mekhaniki MGU im. M. V. Lomonosova № 3969, In-t mekhaniki MGU, Moskva, 1990 , 80 pp.
591.
V. A. Samsonov, M. V. Shamolin, “Modelnaya zadacha o dvizhenii tela v srede so struinym obtekaniem”, Nelineinye kolebaniya mekhanicheskikh sistem. Tezisy dokladov II Vsesoyuznoi konferentsii (Gorkii, sentyabr 1990 g.), 2, GGU, Gorkii, 1990, 95–96
1989
592.
V. A. Samsonov, M. V. Shamolin, “Body motion in a resisting medium”, Moscow University Mechanics Bulletin, 44:3 (1989), 16–20 (cited: 21) (cited: 5)
593.
V. A. Samsonov, M. V. Shamolin, “O dvizhenii tela v soprotivlyayuscheisya srede”, Sovremennye problemy mekhaniki i tekhnologii mashinostroeniya. Vsesoyuznaya konferentsiya, Tezisy dokladov (Moskva, 16–18 aprelya 1989 g.), VINITI, Moskva, 1989, 128–129
1988
594.
V. A. Eroshin, B. A. Samsonov, M. V. Shamolin, “O dvizhenii tela v srede pri struinom obtekanii”, Vsesoyuznaya konferentsiya po ustoichivosti dvizheniya, kolebaniyam mekhanicheskikh sistem i aerodinamike (Moskva, 2–4 fevralya 1988 g.), Dep. v VINITI 22.12.88, №8886-B-88, Mosk. aviats. in-t, Moskva, 1988, 21
О движении точки по двумерной поверхности M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov December 20, 2019 18:30
Численное исследование разностных моделей газовой динамики с ударными волнами S. K. Godunov, M. V. Shamolin, S. V. Fortova, V. V. Shepelev XXII Всероссийская конференция «Теоретические основы и конструирования численных алгоритмов решения задач математической физики», посвященная памяти К. И. Бабенко, Дюрсо, 3–8 сентября 2018 г. September 4, 2018
Многомерный маятник в неконсервативном поле M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov September 19, 2014 18:30
28.
История и “математическая формула” онегинской строфы S. A. Agafonov, D. V. Georgievskii, M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov June 6, 2014 18:30
Задача о маятнике в неконсервативном поле M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov March 30, 2012 18:30
О роли женщин в развитии современной механики S. A. Agafonov, D. V. Georgievskii, I. L. Pokrovski, M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov March 6, 2009 18:30
Некоторые актуальные задачи геометрии и механики S. A. Agafonov, D. V. Georgievskii, M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov February 14, 2003 18:30
Расшиpенная задача диффеpенциальной диагностики U. T. Borisenok, M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov December 3, 1999 18:30
Некоторые задачи дифференциальной диагностики M. V. Shamolin, D. V. Shebarshov Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov May 24, 1999 18:30
Геометрия и механика: задачи, подходы, и методы D. V. Georgievskii, V. V. Trofimov, M. V. Shamolin Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov March 5, 1999 18:30