RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Tertychnyi Sergei Ivanovich

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 11

Number of views:
This page:858
Abstract pages:3927
Full texts:711
References:330
Candidate of physico-mathematical sciences (1983)
Keywords: theory of gravity; general theory of relativity; physical interpretation; exact solutions; electrovacuum; topological methods; Lie groups; computer algebra; symbolical computations; informatics; Internet.
   
Main publications:
  • S. I. Tertychniy. The black hole formed by the electromagnetic radiation // Phys. Lett., 96A, 1983, 73–75.
  • S. ertychniy. On the principles of description of time and space relationships in frames of general relativity. LANL gr-qc/9312010 (1993).
  • S. I. Tertychniy and I. G. Obukhova. GRGEC: Computer Algebra System for Applications to Gravity Theory, SIGSAM Bulletin 31 n. 1, 119(1997), 6–14.
  • S. I. Tertychniy. Generalized Alignment of Gravitational Intencities and Electromagnetic Strengths in Kerr–Newman Space–Time. LANL gr-qc/9804028 (1998).
  • S. I. Tertychniy. On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f(\tau)$ with periodic $f$ // Russian Math. Surveys, 55:1, 186–187.

http://www.mathnet.ru/eng/person9109
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/291958

Publications in Math-Net.Ru
2018
1. V. M. Buchstaber, S. I. Tertychnyi, “Representations of the Klein Group Determined by Quadruples of Polynomials Associated with the Double Confluent Heun Equation”, Mat. Zametki, 103:3 (2018),  346–363  mathnet  elib; Math. Notes, 103:3 (2018), 357–371  isi  scopus
2016
2. V. M. Buchstaber, S. I. Tertychnyi, “Automorphisms of the solution spaces of special double-confluent Heun equations”, Funktsional. Anal. i Prilozhen., 50:3 (2016),  12–33  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 50:3 (2016), 176–192  isi  elib  scopus
2015
3. V. M. Buchstaber, S. I. Tertychnyi, “On a Remarkable Sequence of Bessel Matrices”, Mat. Zametki, 98:5 (2015),  651–663  mathnet  mathscinet  elib; Math. Notes, 98:5 (2015), 714–724  isi  scopus
4. V. M. Buchstaber, S. I. Tertychnyi, “Holomorphic solutions of the double confluent Heun equation associated with the RSJ model of the Josephson junction”, TMF, 182:3 (2015),  373–404  mathnet  mathscinet  elib; Theoret. and Math. Phys., 182:3 (2015), 329–355  isi  elib  scopus
2014
5. V. M. Buchstaber, S. I. Tertychnyi, “Dynamical systems on a torus with identity Poincaré map which are associated with the Josephson effect”, Uspekhi Mat. Nauk, 69:2(416) (2014),  201–202  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 69:2 (2014), 383–385  isi  scopus
2013
6. V. M. Buchstaber, S. I. Tertychnyi, “Explicit solution family for the equation of the resistively shunted Josephson junction model”, TMF, 176:2 (2013),  163–188  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 176:2 (2013), 965–986  isi  elib  scopus
2012
7. V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “A system on a torus modelling the dynamics of a Josephson junction”, Uspekhi Mat. Nauk, 67:1(403) (2012),  181–182  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 67:1 (2012), 178–180  isi  elib  scopus
2010
8. V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “Rotation number quantization effect”, TMF, 162:2 (2010),  254–265  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 162:2 (2010), 211–221  isi  elib  scopus
2008
9. V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “Mathematical models of the dynamics of an overdamped Josephson junction”, Uspekhi Mat. Nauk, 63:3(381) (2008),  155–156  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 63:3 (2008), 557–559  isi  elib  scopus
2004
10. V. M. Buchstaber, O. V. Karpov, S. I. Tertychnyi, “On properties of the differential equation describing the dynamics of an overdamped Josephson junction”, Uspekhi Mat. Nauk, 59:2(356) (2004),  187–188  mathnet  mathscinet  zmath; Russian Math. Surveys, 59:2 (2004), 377–378  isi  scopus
2000
11. S. I. Tertychnyi, “On the asymptotic properties of solutions of the equation $\dot\phi+\sin\phi=f$ with a periodic $f$”, Uspekhi Mat. Nauk, 55:1(331) (2000),  195–196  mathnet  mathscinet  zmath; Russian Math. Surveys, 55:1 (2000), 186–187  isi  scopus

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019