RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Sokolov Vladimir Vyacheslavovich

Statistics Math-Net.Ru
Total publications: 54
Scientific articles: 52
Presentations: 12

Number of views:
This page:1964
Abstract pages:15567
Full texts:5611
References:1599
E-mail:
Keywords: Институт теоретической физики им. Л.Д. Ландау, (117334, Москва, ул.Косыгина 2), вед. научн. сотр.

http://www.mathnet.ru/eng/person9185
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=209926

Publications in Math-Net.Ru
1. Polynomial forms for quantum elliptic Calogero–Moser Hamiltonians
M. G. Matushko, V. V. Sokolov
TMF, 191:1 (2017),  14–24
2. Rational solutions of a Riccati equation
V. V. Sokolov, A. B. Shabat
Uspekhi Mat. Nauk, 71:4(430) (2016),  189–190
3. Algebraic quantum Hamiltonians on the plane
V. V. Sokolov
TMF, 184:1 (2015),  57–70
4. Classification of constant solutions of the associative Yang–Baxter equation on $\operatorname{Mat}_3$
V. V. Sokolov
TMF, 176:3 (2013),  385–392
5. Bi-Hamiltonian ordinary differential equations with matrix variables
A. V. Odesskii, V. N. Rubtsov, V. V. Sokolov
TMF, 171:1 (2012),  26–32
6. Integrable evolution equations with a constant separant
A. G. Meshkov, V. V. Sokolov
Ufimsk. Mat. Zh., 4:3 (2012),  104–154
7. Hyperbolic equations with third-order symmetries
A. G. Meshkov, V. V. Sokolov
TMF, 166:1 (2011),  51–67
8. Some integral equations related to random Gaussian processes
V. G. Marikhin, V. V. Sokolov
TMF, 164:2 (2010),  196–206
9. Integrable $(2+1)$-dimensional systems of hydrodynamic type
A. V. Odesskii, V. V. Sokolov
TMF, 163:2 (2010),  179–221
10. Integrable elliptic pseudopotentials
A. V. Odesskii, V. V. Sokolov
TMF, 161:1 (2009),  21–36
11. On (2+1)-Dimensional Hydrodynamic Type Systems Possessing a Pseudopotential with Movable Singularities
A. V. Odesskii, V. V. Sokolov
Funktsional. Anal. i Prilozhen., 42:3 (2008),  53–62
12. On the reduction of the pair of hamiltonians quadratic in momenta to canonic form and real partial separation of variables for the Clebsch top
V. G. Marikhin, V. V. Sokolov
Nelin. Dinam., 4:3 (2008),  313–322
13. Symmetries of nonlinear hyperbolic systems of the Toda chain type
V. V. Sokolov, S. Ya. Startsev
TMF, 155:2 (2008),  344–355
14. Classification of integrable Vlasov-type equations
A. V. Odesskii, M. V. Pavlov, V. V. Sokolov
TMF, 154:2 (2008),  249–260
15. Pairs of commuting Hamiltonians quadratic in the momenta
V. G. Marikhin, V. V. Sokolov
TMF, 149:2 (2006),  147–160
16. Compatible Lie Brackets and the Yang–Baxter Equation
I. Z. Golubchik, V. V. Sokolov
TMF, 146:2 (2006),  195–207
17. Separation of variables on non-hiperelliptic curve
V. G. Marikhin, V. V. Sokolov
Nelin. Dinam., 1:1 (2005),  53–67
18. On quasi-Stäckel Hamiltonians
V. G. Marikhin, V. V. Sokolov
Uspekhi Mat. Nauk, 60:5(365) (2005),  175–176
19. Decompositions of the loop algebra over $\mathrm{so}(4)$ and integrable models of the chiral equation type
O. V. Efimovskaya, V. V. Sokolov
Fundam. Prikl. Mat., 10:1 (2004),  39–47
20. Factorization of the Loop Algebra and Integrable Toplike Systems
I. Z. Golubchik, V. V. Sokolov
TMF, 141:1 (2004),  3–23
21. Classification of Integrable Divergent $N$-Component Evolution Systems
A. G. Meshkov, V. V. Sokolov
TMF, 139:2 (2004),  192–208
22. Compatible Lie Brackets and Integrable Equations of the Principal Chiral Model Type
I. Z. Golubchik, V. V. Sokolov
Funktsional. Anal. i Prilozhen., 36:3 (2002),  9–19
23. Commutative Poisson Subalgebras for Sklyanin Brackets and Deformations of Some Known Integrable Models
V. V. Sokolov, A. V. Tsiganov
TMF, 133:3 (2002),  485–500
24. Lax Pairs for the Deformed Kowalevski and Goryachev–Chaplygin Tops
V. V. Sokolov, A. V. Tsiganov
TMF, 131:1 (2002),  118–125
25. Exactly integrable hyperbolic equations of Liouville type
A. V. Zhiber, V. V. Sokolov
Uspekhi Mat. Nauk, 56:1(337) (2001),  63–106
26. A New Integrable Case for the Kirchhoff Equation
V. V. Sokolov
TMF, 129:1 (2001),  31–37
27. One More Kind of the Classical Yang–Baxter Equation
I. Z. Golubchik, V. V. Sokolov
Funktsional. Anal. i Prilozhen., 34:4 (2000),  75–78
28. Multicomponent generalization of the hierarchy of the Landau–Lifshitz equation
I. Z. Golubchik, V. V. Sokolov
TMF, 124:1 (2000),  62–71
29. Integrable ordinary differential equations on free associative algebras
A. V. Mikhailov, V. V. Sokolov
TMF, 122:1 (2000),  88–101
30. Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras
I. Z. Golubchik, V. V. Sokolov
TMF, 120:2 (1999),  248–255
31. New example of a nonlinear hyperbolic equation possessing integrals
A. V. Zhiber, V. V. Sokolov
TMF, 120:1 (1999),  20–26
32. Integrable equations on $\mathbb Z$-graded Lie algebras
I. Z. Golubchik, V. V. Sokolov
TMF, 112:3 (1997),  375–383
33. On some generalizations of the factorization method
I. Z. Golubchik, V. V. Sokolov
TMF, 110:3 (1997),  339–350
34. Integrable Systems Generated by a Constant Solution of the Yang–Baxter Equation
I. Z. Golubchik, V. V. Sokolov
Funktsional. Anal. i Prilozhen., 30:4 (1996),  68–71
35. Deformations of triple Jordan systems and integrable equations
S. I. Svinolupov, V. V. Sokolov
TMF, 108:3 (1996),  388–392
36. Vector-matrix generalizations of classical integrable equations
S. I. Svinolupov, V. V. Sokolov
TMF, 100:2 (1994),  214–218
37. A generalization of a theorem of Lie, and Jordan tops
S. I. Svinolupov, V. V. Sokolov
Mat. Zametki, 53:2 (1993),  122–125
38. Factorization of evolution equations
S. I. Svinolupov, V. V. Sokolov
Uspekhi Mat. Nauk, 47:3(285) (1992),  115–146
39. Representations of contragradient Lie algebras in contact vector fields
S. I. Svinolupov, V. V. Sokolov
Funktsional. Anal. i Prilozhen., 25:2 (1991),  76–78
40. Weak nonlocalities in evolution equations
S. I. Svinolupov, V. V. Sokolov
Mat. Zametki, 48:6 (1990),  91–97
41. Pseudosymmetries and differential substitutions
V. V. Sokolov
Funktsional. Anal. i Prilozhen., 22:2 (1988),  47–56
42. On the symmetries of evolution equations
V. V. Sokolov
Uspekhi Mat. Nauk, 43:5(263) (1988),  133–163
43. Integrable evolution equations with constraints
F. Kh. Mukminov, V. V. Sokolov
Mat. Sb. (N.S.), 133(175):3(7) (1987),  392–414
44. Quasienergy integral for canonical maps
V. V. Sokolov
TMF, 67:2 (1986),  223–236
45. Lie algebras and equations of Korteweg–de Vries type
V. G. Drinfeld, V. V. Sokolov
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 24 (1984),  81–180
46. On the nature of the quantum corrections in the case of stochastic motion of a nolinear oscillator
V. V. Sokolov
TMF, 61:1 (1984),  128–139
47. Moments of the distributio function and kinetic equation for stochastic motion of a nonlinear oscillator
V. V. Sokolov
TMF, 59:1 (1984),  117–128
48. Evolution equations with nontrivial conservative laws
S. I. Svinolupov, V. V. Sokolov
Funktsional. Anal. i Prilozhen., 16:4 (1982),  86–87
49. $(L,A)$-Pairs and a Ricatti type substitution
V. V. Sokolov, A. B. Shabat
Funktsional. Anal. i Prilozhen., 14:2 (1980),  79–80
50. Birationally isomorphic commutative rings of differential operators
V. V. Sokolov
Funktsional. Anal. i Prilozhen., 12:3 (1978),  88–89
51. Examples of commutative rings of differential operators
V. V. Sokolov
Funktsional. Anal. i Prilozhen., 12:1 (1978),  82–83
52. Adiabatic perturbation theory for quasilevels
V. V. Sokolov
TMF, 35:3 (1978),  339–351

53. In memory of Boris Valerianovich Chirikov
L. M. Barkov, A. E. Bondar, N. S. Dikanskii, G. I. Dimov, È. P. Kruglyakov, G. N. Kulipanov, I. N. Meshkov, V. V. Parkhomchuk, A. N. Skrinsky, V. V. Sokolov, V. S. Fadin, I. B. Khriplovich
UFN, 178:4 (2008),  447–448
54. Iosif Bentsionovich Khriplovich (on his seventieth birthday)
V. N. Baier, L. M. Barkov, A. E. Bondar, N. S. Dikanskii, V. F. Dmitriev, M. S. Zolotorev, È. P. Kruglyakov, G. N. Kulipanov, A. N. Skrinsky, V. V. Sokolov, V. S. Fadin, B. V. Chirikov
UFN, 177:2 (2007),  231

Presentations in Math-Net.Ru
1. Algebraic quantum Hamiltonians on the plane. Polynomial form for the elliptic $A_n$ Calogero-Moser system.
V. V. Sokolov,
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
February 25, 2015 18:30
2. Высшие симметрии, законы сохранения и классификация интегрируемых систем
V. V. Sokolov

June 27, 2014 10:40   
3. Пары Лакса и иерархии интегрируемых уравнений
V. V. Sokolov

June 26, 2014 15:50   
4. Интегрируемые дифференциальные уравнения с матричными неизвестными II
V. V. Sokolov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
April 3, 2013 18:30
5. Интегрируемые дифференциальные уравнения с матричными неизвестными
V. V. Sokolov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
March 6, 2013 18:30
6. Integrable ODEs with matrix variables (3 lecture of mini-course)
V. V. Sokolov
Algebraic Structures in Integrable Systems
December 7, 2012 14:00   
7. Non-associative algebras and polynomial integrable systems (2 lecture of mini-course)
V. V. Sokolov
Algebraic Structures in Integrable Systems
December 5, 2012 10:00   
8. Symmetry approach to classification of integrable PDEs (1 lecture of mini-course)
V. V. Sokolov
Algebraic Structures in Integrable Systems
December 3, 2012 11:30   
9. Integrable nonhomogeneous hydrodynamic type systems.
V. V. Sokolov
International Workshop «Geometric Structures in Integrable Systems»
October 31, 2012 14:40   
10. Интегрируемые 3D-системы гидродинамического типа
V. V. Sokolov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
March 28, 2007
11. Коммутирующие гамильтонианы, квадратичные по моментам
V. V. Sokolov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
October 5, 2005
12. New integrable quadratic Hamiltonians in the dynamics of the rigid body
V. V. Sokolov
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
January 22, 2004

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018