RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Lapin, Yurii Victorovich

Statistics Math-Net.Ru
Total publications: 13
Scientific articles: 13

Number of views:
This page:103
Abstract pages:1135
Full texts:556
Doctor of physico-mathematical sciences (1971)

http://www.mathnet.ru/eng/person99896
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
2005
1. S. B. Koleshko, Yu. V. Lapin, Yu. S. Chumakov, “Turbulent Free-Convection Boundary Layer on a Vertical Heated Plate: Regularities of the Temperature Layer”, TVT, 43:3 (2005),  431–441  mathnet; High Temperature, 43:3 (2005), 429–440
2002
2. A. V. Garbaruk, Yu. V. Lapin, M. Kh. Strelets, “Turbulent Boundary Layer under Simultaneous Effect of the Longitudinal Pressure Gradient, Injection (Suction), and Transverse Surface Curvature”, TVT, 40:3 (2002),  436–441  mathnet; High Temperature, 40:3 (2002), 399–404  isi
2001
3. A. V. Garbaruk, Yu. V. Lapin, M. Kh. Strelets, “An algebraic model of turbulence for flows with a maximum of tangential stress inside the boundary layer”, TVT, 39:4 (2001),  589–598  mathnet; High Temperature, 39:4 (2001), 548–557
2000
4. A. N. Labusov, Yu. V. Lapin, “Algebraic model of turbulent boundary layer on a convex curvilinear surface”, TVT, 38:3 (2000),  458–467  mathnet; High Temperature, 38:3 (2000), 434–443  isi  scopus
1999
5. A. V. Garbaruk, Yu. V. Lapin, M. Kh. Strelets, “Assessment of the capabilities of explicit algebraic Reynolds stress models as applied to the calculation of wall turbulent boundary layers”, TVT, 37:6 (1999),  920–927  mathnet; High Temperature, 37:6 (1999), 887–894  isi
6. A. V. Garbaruk, Yu. V. Lapin, M. Kh. Strelets, “Simple algebraic model of turbulence for the calculation of turbulent boundary layer with adverse pressure gradient”, TVT, 37:1 (1999),  87–91  mathnet; High Temperature, 37:1 (1999), 82–86  isi
1998
7. A. V. Garbaruk, Yu. V. Lapin, M. Kh. Strelets, “The use of inverse method of solving boundary-layer equations for the testing of turbulence models”, TVT, 36:4 (1998),  607–616  mathnet; High Temperature, 36:4 (1998), 583–592  isi
1996
8. A. N. Labusov, Yu. V. Lapin, “Four-parameteric two-layer algebraic model of transition boundary layer at a flat plate”, TVT, 34:6 (1996),  942–948  mathnet; High Temperature, 34:6 (1996), 928–934  isi
1995
9. Yu. V. Lapin, O. A. Nehamkina, M. Kh. Strelets, “A multiparameter algebraic model of steady turbulent flow in a round pipe with sand roughness”, TVT, 33:5 (1995),  731–737  mathnet; High Temperature, 33:5 (1995), 725–731  isi
10. Yu. V. Lapin, V. A. Pospelov, “Turbulent boundary layer on a flat plate”, TVT, 33:3 (1995),  422–429  mathnet; High Temperature, 33:3 (1995), 421–428  isi
11. Yu. V. Lapin, O. A. Nehamkina, M. Kh. Strelets, “A two-layer three-parameter algebraic model of a transient and a steady turbulent flow in a round pipe with smooth walls”, TVT, 33:1 (1995),  49–53  mathnet; High Temperature, 33:1 (1995), 45–49  isi
1985
12. Yu. V. Lapin, M. Kh. Strelets, “Modification of Clauser hypothesis for equilibrium and nonequilibrium boundary-layers”, TVT, 23:3 (1985),  522–529  mathnet; High Temperature, 23:3 (1985), 422–429  isi
1983
13. Yu. V. Lapin, M. Kh. Strelets, L. M. Shur, “Numerical study of the interaction of supersonic viscous-gas jets in the presence of non-equilibrium physicochemical processes”, TVT, 21:1 (1983),  114–121  mathnet; High Temperature, 21:1 (1983), 102–109  isi

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019