RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
 
Мерекин Юрий Владимирович

В базах данных Math-Net.Ru
Публикаций: 10
Научных статей: 10

Статистика просмотров:
Эта страница:356
Страницы публикаций:1956
Полные тексты:701
Списки литературы:149
старший научный сотрудник
кандидат технических наук (1969)
Дата рождения: 04.12.1935
E-mail:
Ключевые слова: символьная последовательность; схема; сложность; оценки сложности.
   
Основные публикации:
  • Мерекин Ю. В. Нижняя оценка сложности для схем конкатенации слов // Дискрет. анализ и исслед. операций. 1996. Т. 3. № 1. C. 52–56.
  • Мерекин Ю. В. Верхние оценки сложности символьных последовательностей, порождаемых симметрическими булевыми функциями // Дискрет. анализ и исслед. операций. Сер. 1. 1998. Т. 5. № 3. C. 38–43.
  • Merekin Yu. V. Upper bounds for the complexity of sequences generated by symmetric Boolean functions // Discrete Applied Math. 2001. V. 114. No. 1–3. P. 227–231.
  • Мерекин Ю. В. Нижние оценки мультипликативной сложности символьных последовательностей, определяемых монотонными симметрическими булевыми функциями // Дискрет. анализ и исслед. операций. Сер. 1. 1999. Т. 6. № 3. C. 3–9.
  • Мерекин Ю. В. Нижние оценки сложности символьных последовательностей, определяемых симметрическими булевыми функциями // Дискрет. анализ и исслед. операций. Сер. 1. 2000. Т. 7. № 2. C. 54–64.
  • Мерекин Ю. В. Оценки мультипликативной сложности двоичных слов, определяемых поясковыми булевыми функциями // Дискрет. анализ и исслед. операций. Сер. 1. 2002. Т. 9. № 2. C. 36–47.

http://www.mathnet.ru/rus/person17890
Список публикаций на Google Scholar
Список публикаций на ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/618589

Публикации в базе данных Math-Net.Ru
2014
1. Ю. В. Мерекин, “Функция Шеннона быстрого вычисления сложности по Арнольду двоичных слов длины $2^n$ для произвольных значений $n$”, Дискретн. анализ и исслед. опер., 21:2 (2014),  59–75  mathnet  mathscinet; Yu. V. Merekin, “The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary $n$”, J. Appl. Industr. Math., 9:1 (2015), 98–109
2012
2. Ю. В. Мерекин, “Функция Шеннона вычисления сложности по Арнольду двоичных слов длины $2^n$”, Дискретн. анализ и исслед. опер., 19:6 (2012),  49–55  mathnet  mathscinet; Yu. V. Merekin, “The Shannon function of computation of the Arnold complexity of length $2^n$ binary words”, J. Appl. Industr. Math., 7:2 (2013), 229–233
2005
3. Ю. В. Мерекин, “Об аддитивной сложности частично коммутативных слов”, Дискретн. анализ и исслед. опер., сер. 1, 12:4 (2005),  40–50  mathnet  mathscinet  zmath
2003
4. Ю. В. Мерекин, “О порождении слов с использованием операции композиции”, Дискретн. анализ и исслед. опер., сер. 1, 10:4 (2003),  70–78  mathnet  mathscinet  zmath
2002
5. Ю. В. Мерекин, “Оценки мультипликативной сложности двоичных слов, определяемых поясковыми булевыми функциями”, Дискретн. анализ и исслед. опер., сер. 1, 9:2 (2002),  36–47  mathnet  mathscinet  zmath
2000
6. Ю. В. Мерекин, “Нижние оценки сложности символьных последовательностей, определяемых симметрическими булевыми функциями”, Дискретн. анализ и исслед. опер., сер. 1, 7:2 (2000),  54–64  mathnet  mathscinet  zmath
1999
7. Ю. В. Мерекин, “Нижние оценки мультипликативной сложности символьных последовательностей, определяемых монотонными симметрическими булевыми функциями”, Дискретн. анализ и исслед. опер., сер. 1, 6:3 (1999),  3–9  mathnet  mathscinet  zmath
1998
8. Ю. В. Мерекин, “Верхние оценки сложности символьных последовательностей, порождаемых симметрическими булевыми функциями”, Дискретн. анализ и исслед. опер., сер. 1, 5:3 (1998),  38–43  mathnet  mathscinet  zmath
9. Ю. В. Мерекин, “О сложности символьных последовательностей, определяемых линейными булевыми функциями”, Сиб. журн. индустр. матем., 1:1 (1998),  145–147  mathnet  mathscinet  zmath
1996
10. Ю. В. Мерекин, “Нижняя оценка сложности для схем конкатенации слов”, Дискретн. анализ и исслед. опер., 3:1 (1996),  52–56  mathnet  mathscinet  zmath

Организации
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020