Персоналии
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
 
Паньженский Владимир Иванович

В базах данных Math-Net.Ru
Публикаций: 21
Научных статей: 21

Статистика просмотров:
Эта страница:1822
Страницы публикаций:2855
Полные тексты:999
Списки литературы:345
профессор
кандидат физико-математических наук (1991)
E-mail:

http://www.mathnet.ru/rus/person36611
Список публикаций на Google Scholar
Список публикаций на ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/203947

Публикации в базе данных Math-Net.Ru
2020
1. В. И. Паньженский, О. П. Сурина, “Субримановы геодезические на многомерной группе Гейзенберга”, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 180 (2020),  74–84  mathnet
2. В. И. Паньженский, А. О. Растрепина, “Левоинвариантная контактная метрическая структура на многообразии Sol”, Учен. зап. Казан. ун-та. Сер. Физ.-матем. науки, 162:1 (2020),  77–90  mathnet  isi
2019
3. В. И. Паньженский, Т. Р. Климова, “Контактная метрическая связность с кососимметрическим кручением”, Изв. вузов. Матем., 2019, 11,  54–63  mathnet; V. I. Panzhenskii, T. R. Klimova, “The contact metric connection with skew torsion”, Russian Math. (Iz. VUZ), 63:11 (2019), 47–55  isi  scopus
2018
4. В. И. Паньженский, С. Е. Степанов, М. В. Сорокина, “Метрически-аффинные пространства”, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., 146 (2018),  89–102  mathnet  mathscinet
5. В. И. Паньженский, Т. Р. Климова, “Контактная метрическая связность на группе Гейзенберга”, Изв. вузов. Матем., 2018, 11,  51–59  mathnet; V. I. Panzhenskii, T. R. Klimova, “The contact metric connection on the Heisenberg group”, Russian Math. (Iz. VUZ), 62:11 (2018), 45–52  isi  scopus
2016
6. В. И. Паньженский, О. П. Сурина, “Финслерово обобщение метрики Тамма”, ТМФ, 189:2 (2016),  186–197  mathnet  mathscinet  elib; V. I. Panzhenskij, O. P. Surina, “Finsler generalization of the Tamm metric”, Theoret. and Math. Phys., 189:2 (2016), 1563–1573  isi  scopus
2015
7. И. И. Баврин, В. И. Паньженский, О. Э. Яремко, “Статистические структуры порождаемые рандомизированными плотностями распределения”, Чебышевский сб., 16:4 (2015),  28–40  mathnet  elib
8. В. И. Паньженский, Н. А. Тяпин, “Автоморфизмы симплектических и контактных структур”, Совр. матем. и ее приложения, 96 (2015),  34–70  mathnet; V. I. Panzhenskij, N. A. Tyapin, “Automorphisms of symplectic and contact structures”, Journal of Mathematical Sciences, 217:5 (2016), 557–594
9. В. И. Паньженский, “Движения в пространствах с кручением”, Совр. матем. и ее приложения, 96 (2015),  18–33  mathnet; V. I. Panzhenskij, “Isometries of spaces with torsion”, Journal of Mathematical Sciences, 217:5 (2016), 540–556
10. В. И. Паньженский, “Автоморфизмы многообразий Римана–Картана”, Матем. заметки, 98:4 (2015),  544–556  mathnet  mathscinet  elib; V. I. Panzhenskij, “Automorphisms of Riemann–Cartan Manifolds”, Math. Notes, 98:4 (2015), 613–623  isi  scopus
2014
11. V. I. Panzhensky, “Automorphisms of Riemann–Cartan Manifolds with Semi-Symmetric Connection”, Журн. матем. физ., анал., геом., 10:2 (2014),  233–239  mathnet  mathscinet  isi
2013
12. В. И. Паньженский, “Стационарная модель Вселенной с кручением”, ТМФ, 177:1 (2013),  151–162  mathnet  mathscinet  zmath  elib; V. I. Panzhenskij, “Stationary model of the Universe with torsion”, Theoret. and Math. Phys., 177:1 (2013), 1412–1422  isi  elib  scopus
2010
13. В. И. Паньженский, О. В. Сухова, “Максимально подвижные пространства финслерова типа и их обобщения”, Фундамент. и прикл. матем., 16:1 (2010),  109–119  mathnet  mathscinet; V. I. Panzhensky, O. V. Sukhova, “Maximally movable spaces of Finsler type and their generalization”, J. Math. Sci., 177:4 (2011), 589–596  scopus
2009
14. В. И. Паньженский, “Максимально подвижные римановы пространства с кручением”, Матем. заметки, 85:5 (2009),  754–757  mathnet  mathscinet  zmath; V. I. Panzhenskij, “Maximally Movable Riemannian Spaces with Torsion”, Math. Notes, 85:5 (2009), 720–723  isi  scopus
2007
15. В. И. Паньженский, “Движения в пространствах Кавагучи со специальной метрикой”, Изв. вузов. Матем., 2007, 12,  77–82  mathnet  mathscinet; V. I. Panzhenskij, “Motions in Kawaguchi spaces with special metric”, Russian Math. (Iz. VUZ), 51:12 (2007), 78–83
16. В. И. Паньженский, О. В. Сухова, “Почти эрмитовы структуры на касательном расслоении почти симплектического многообразия”, Изв. вузов. Матем., 2007, 11,  75–78  mathnet  mathscinet; V. I. Panzhenskij, O. V. Sukhova, “Almost Hermitian structures on the tangent bundle of almost symplectic manifold”, Russian Math. (Iz. VUZ), 51:11 (2007), 73–75
2005
17. В. И. Паньженский, “Об инфинитезимальных автоморфизмах почти симплектических структур”, Учён. зап. Казан. гос. ун-та. Сер. Физ.-матем. науки, 147:1 (2005),  148–153  mathnet
2003
18. В. И. Паньженский, М. В. Сорокина, “Пространства финслерова типа, близкие к римановым”, Тр. геом. сем., 24 (2003),  121–128  mathnet
1997
19. В. И. Паньженский, “Инвариантные характеристики некоторых классов почти эрмитовых структур”, Тр. геом. сем., 23 (1997),  77–83  mathnet  mathscinet
1996
20. О. П. Сурина, В. И. Паньженский, “К геометрии обобщенного финслерова пространства со специальной метрикой”, Изв. вузов. Матем., 1996, 2,  30–34  mathnet  mathscinet  zmath; O. P. Surina, V. I. Panzhenskij, “On the geometry of a generalized Finsler space with a special metric.”, Russian Math. (Iz. VUZ), 40:2 (1996), 28–32
1990
21. В. И. Паньженский, “К геометрии касательного расслоения локально конического пространства”, Изв. вузов. Матем., 1990, 10,  71–74  mathnet  mathscinet  zmath; V. I. Panzhenskij, “On the geometry of a tangent bundle of the locally conic space”, Soviet Math. (Iz. VUZ), 34:10 (1990), 92–95

Организации
 
Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021