RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
 
Былков Даниил Николаевич

В базах данных Math-Net.Ru
Публикаций: 10
Научных статей: 10

Статистика просмотров:
Эта страница:370
Страницы публикаций:2202
Полные тексты:800
Списки литературы:255
E-mail:

http://www.mathnet.ru/rus/person46267
Список публикаций на Google Scholar
Список публикаций на ZentralBlatt

Публикации в базе данных Math-Net.Ru
2014
1. Д. Н. Былков, “Построение новых классов фильтрующих генераторов, не имеющих эквивалентных состояний”, Матем. вопр. криптогр., 5:4 (2014),  17–39  mathnet
2. D. N. Bylkov, “Reconstruction of a linear recurrence of maximal period over a Galois ring of characteristic $p^3$ by its highest digital sequence”, Матем. вопр. криптогр., 5:2 (2014),  29–35  mathnet
3. Д. Н. Былков, “Об одном классе булевых функций, построенных с использованием старших разрядных последовательностей линейных рекуррент”, ПДМ. Приложение, 2014, 7,  59–60  mathnet
2013
4. Д. Н. Былков, “Вторая координатная последовательность линейной рекурренты максимального периода над кольцом $\mathbb{Z}_{8}$”, ПДМ. Приложение, 2013, 6,  9–10  mathnet
2012
5. Д. Н. Былков, О. В. Камловский, “Параметры булевых функций, построенных с использованием старших координатных последовательностей линейных рекуррент”, Матем. вопр. криптогр., 3:4 (2012),  25–53  mathnet
2011
6. А. В. Аборнев, Д. Н. Былков, “Многочлены над примарными кольцами вычетов с малым расстоянием единственности”, ПДМ, 2011, приложение № 4,  24–25  mathnet
2010
7. Д. Н. Былков, А. А. Нечаев, “Алгоритм восстановления ЛРП над кольцом $R=\mathbf Z_{p^n}$ по линейному усложнению ее старшей координатной последовательности”, Дискрет. матем., 22:4 (2010),  104–120  mathnet  mathscinet  elib; D. N. Bylkov, A. A. Nechaev, “An algorithm to restore a linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a linear complication of its highest coordinate sequence”, Discrete Math. Appl., 20:5-6 (2010), 591–609  scopus
8. Д. Н. Былков, “Класс усложнений линейных рекуррент над кольцом Галуа, не приводящий к потере информации”, Пробл. передачи информ., 46:3 (2010),  51–59  mathnet  mathscinet; D. N. Bylkov, “A class of injective compressing maps on linear recurring sequences over a Galois ring”, Problems Inform. Transmission, 46:3 (2010), 245–252  isi  scopus
2008
9. Д. Н. Былков, “Расстояние единственности семейства координатных последовательностей, полученных усложнением линейных рекуррент над кольцом Галуа”, ПДМ, 2008, 2(2),  5–7  mathnet
10. Д. Н. Былков, О. В. Камловский, “Индексы вхождений элементов в линейные рекуррентные последовательности над примарными кольцами вычетов”, Пробл. передачи информ., 44:2 (2008),  101–109  mathnet  mathscinet; D. N. Bylkov, O. V. Kamlovskii, “Occurrence Indices of Elements in Linear Recurrence Sequences over Primary Residue Rings”, Problems Inform. Transmission, 44:2 (2008), 161–168  isi  scopus

Организации
 
Обратная связь:
 Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020