RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Grigoryan, Martin Gevorgovich

Statistics Math-Net.Ru
Total publications: 21
Scientific articles: 21

Number of views:
This page:1482
Abstract pages:4927
Full texts:1279
References:702
Professor
Doctor of physico-mathematical sciences (1997)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
E-mail:
Keywords: Vilenkin system, convergence, Fourier coefficients.

http://www.mathnet.ru/eng/person13591
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/189128

Publications in Math-Net.Ru
2018
1. M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Mat. Sb., 209:1 (2018),  37–57  mathnet  elib; Sb. Math., 209:1 (2018), 35–55  isi  scopus
2. M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Sibirsk. Mat. Zh., 59:5 (2018),  1057–1065  mathnet  elib; Siberian Math. J., 59:5 (2018), 835–842  isi  scopus
3. M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, Zap. Nauchn. Sem. POMI, 467 (2018),  34–54  mathnet; J. Math. Sci. (N. Y.), 243:6 (2019), 844–858  scopus
2016
4. M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. RAN. Ser. Mat., 80:6 (2016),  65–91  mathnet  mathscinet  elib; Izv. Math., 80:6 (2016), 1057–1083  isi  scopus
5. M. G. Grigoryan, A. A. Sargsyan, “On existence of a universal function for $L^p[0,1]$ with $p\in(0,1)$”, Sibirsk. Mat. Zh., 57:5 (2016),  1021–1035  mathnet  elib; Siberian Math. J., 57:5 (2016), 796–808  isi  scopus
2015
6. L. N. Galoyan, M. G. Grigoryan, A. Kh. Kobelyan, “Convergence of Fourier series in classical systems”, Mat. Sb., 206:7 (2015),  55–94  mathnet  mathscinet  zmath  elib; Sb. Math., 206:7 (2015), 941–979  isi  scopus
2013
7. M. G. Grigoryan, S. A. Sargsyan, “Nonlinear approximation of functions from the class $L^r$ with respect to the Vilenkin system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, 2,  30–39  mathnet; Russian Math. (Iz. VUZ), 57:2 (2013), 25–33  scopus
8. M. G. Grigoryan, V. G. Krotov, “Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System”, Mat. Zametki, 93:2 (2013),  172–178  mathnet  mathscinet  zmath  elib; Math. Notes, 93:2 (2013), 217–223  isi  elib  scopus
2012
9. M. G. Grigoryan, “Modifications of functions, Fourier coefficients and nonlinear approximation”, Mat. Sb., 203:3 (2012),  49–78  mathnet  mathscinet  zmath  elib; Sb. Math., 203:3 (2012), 351–379  isi  scopus
2008
10. M. G. Grigorian, “On the strengthened $L^1$-greedy property of the Walsh system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, 5,  26–37  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 52:5 (2008), 20–31
11. M. G. Grigoryan, A. A. Sargsyan, “Non-linear approximation of continuous functions by the Faber-Schauder system”, Mat. Sb., 199:5 (2008),  3–26  mathnet  mathscinet  zmath  elib; Sb. Math., 199:5 (2008), 629–653  isi  scopus
2003
12. M. G. Grigoryan, “On the $L^p_\mu$-strong property of orthonormal systems”, Mat. Sb., 194:10 (2003),  77–106  mathnet  mathscinet  zmath; Sb. Math., 194:10 (2003), 1503–1532  isi  scopus
2002
13. M. G. Grigoryan, “On an orthonormal system”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, 4,  24–28  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 46:4 (2002), 22–26
2001
14. M. G. Grigoryan, A. S. Sarkisyan, “On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces”, Proceedings of the YSU, Physical and Mathematical Sciences, 2001, 1,  136–138  mathnet
2000
15. M. G. Grigoryan, “On universality systems in $L^p$, $1\leq p<2$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2000, 5,  19–22  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 44:5 (2000), 17–20
1993
16. M. G. Grigoryan, “On some properties of orthogonal systems”, Izv. RAN. Ser. Mat., 57:5 (1993),  75–105  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 43:2 (1994), 261–289  isi
1992
17. M. G. Grigoryan, “On certain properties of orthogonal systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, 10,  80–82  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:10 (1992), 78–80
18. M. G. Grigoryan, “Convergence of Fourier–Laplace series in the $L^p$ metric”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, 2,  17–23  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:2 (1992), 17–23
19. M. G. Grigoryan, “The almost everywhere convergence of fourier series according to complete orthonormal systems”, Mat. Zametki, 51:5 (1992),  35–43  mathnet  mathscinet  zmath; Math. Notes, 51:5 (1992), 447–453  isi
1990
20. M. G. Grigoryan, “Convergence of Fourier-Walsh series in the $L^1$ metric and almost everywhere”, Izv. Vyssh. Uchebn. Zaved. Mat., 1990, 11,  9–18  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 34:11 (1990), 9–20
21. M. G. Grigoryan, “On convergence of Fourier series in complete orthonormal systems in the $L^1$-metric and almost everywhere”, Mat. Sb., 181:8 (1990),  1011–1030  mathnet  mathscinet  zmath; Math. USSR-Sb., 70:2 (1991), 445–466  isi

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020