RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Yakubov, Vladimir Yakovlevich

Statistics Math-Net.Ru
Total publications: 13
Scientific articles: 13

Number of views:
This page:521
Abstract pages:1657
Full texts:722
References:146
Professor
Doctor of physico-mathematical sciences
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords: Spectral boundary value problems, Shturm–Liouville problems.
UDC: 517.91, 517.984

Subject:

Spectral boundary value problems, Shturm–Liouville problems, estimates for normed in $L_2$ eigenfunctions with respect to the spectral parameter

   
Main publications:
  • Otsenki po spektralnomu parametru dlya sobstvennykh funktsii ellipticheskikh operatorov V. Ya. Yakubov Funkts. analiz i ego pril., 33:2 (1999), 58–67

http://www.mathnet.ru/eng/person17363
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/194217

Publications in Math-Net.Ru
2009
1. V. Ya. Yakubov, “Differential equations whose solution of the Cauchy problem displays nonclassical behaviour with respect to the parameter $\lambda$”, Mat. Sb., 200:10 (2009),  151–160  mathnet  mathscinet  zmath  elib; Sb. Math., 200:10 (2009), 1565–1574  isi  scopus
1999
2. V. Ya. Yakubov, “Estimates for Eigenfunctions of Elliptic Operators with Respect to the Spectral Parameter”, Funktsional. Anal. i Prilozhen., 33:2 (1999),  58–67  mathnet  mathscinet  zmath; Funct. Anal. Appl., 33:2 (1999), 128–136  isi
1998
3. V. Ya. Yakubov, “Estimates for solutions of Cauchy problems involving a spectral parameter”, Differ. Uravn., 34:1 (1998),  59–63  mathnet  mathscinet; Differ. Equ., 34:1 (1998), 59–64
1996
4. V. Ya. Yakubov, “Reconstruction of a Sturm–Liouville equation with an integrable weight”, Uspekhi Mat. Nauk, 51:4(310) (1996),  175–176  mathnet  mathscinet  zmath; Russian Math. Surveys, 51:4 (1996), 758–759  isi  scopus
1994
5. V. Ya. Yakubov, “Boundedness of normalized eigenfunctions for the Sturm–Liouville problem with minimal constraints on the smoothness of the coefficients”, Differ. Uravn., 30:8 (1994),  1465–1467  mathnet  mathscinet; Differ. Equ., 30:8 (1994), 1361–1364
1993
6. V. Ya. Yakubov, “Different orders of growth of normalized eigenfunctions of the Sturm–Liouville problem with continuous weight”, Differ. Uravn., 29:6 (1993),  982–989  mathnet  mathscinet; Differ. Equ., 29:6 (1993), 841–848
7. V. Ya. Yakubov, “A Dirac-type system with variable coefficients”, Differ. Uravn., 29:1 (1993),  156–164  mathnet  mathscinet; Differ. Equ., 29:1 (1993), 132–138
8. V. Ya. Yakubov, “Attainability of sharp estimates, and a different order of growth of normalized vector-valued eigenfunctions of spectral boundary-value problems for systems of Dirac type”, Uspekhi Mat. Nauk, 48:4(292) (1993),  227–228  mathnet  mathscinet  zmath; Russian Math. Surveys, 48:4 (1993), 254–255  isi
9. V. Ya. Yakubov, “Nonclassical two-sided sharp estimates for normalized eigenfunctions of the Sturm–Liouville problem”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1993, 4,  37–44  mathnet  mathscinet  zmath
1984
10. V. Ya. Yakubov, “Estimates for elliptic operator eigenfunctions normalized in $L_2$”, Dokl. Akad. Nauk SSSR, 274:1 (1984),  35–37  mathnet  mathscinet  zmath
1983
11. V. Ya. Yakubov, “A nonselfadjoint irregular elliptic spectral partial differential boundary value problem”, Differ. Uravn., 19:10 (1983),  1777–1785  mathnet  mathscinet
12. M. M. Gekhtman, Yu. M. Zagiriv, V. Ya. Yakubov, “Asymptotic behavior of eigenfunctions of the Sturm–Liouville spectral problem”, Funktsional. Anal. i Prilozhen., 17:3 (1983),  71–72  mathnet  mathscinet  zmath; Funct. Anal. Appl., 17:3 (1983), 221–223  isi
1968
13. V. I. Plotnikov, V. Ya. Yakubov, “The one-dimensional generalized Sturm-Liouville problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 1968, 12,  70–81  mathnet  mathscinet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020