RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Lomov Igor Sergeevich

Statistics Math-Net.Ru
Total publications: 29
Scientific articles: 28

Number of views:
This page:1288
Abstract pages:1563
Full texts:570
References:59
Professor
Doctor of physico-mathematical sciences (2002)
Birth date: 15.04.1954
E-mail:
Keywords: differential equations, spectrum, eigenvaluie, eigenfunctions, expansions of functions in biorthogonal serieses, small parameter, singular disterbed differential operators.
   
Main publications:
  • Lomov I. S. O lokalnoi skhodimosti biortogonalnykh ryadov, svyazannykh s differentsialnymi operatorami s negladkimi koeffitsientami. 1, 2 // Differentsialnye uravneniya. 2001. T. 37, # 3. S. 328–342; # 5. S. 648–660.
  • Lomov I. S. Usloviya skhodimosti biortogonalnykh funktsii na otrezke // Differentsialnye uravneniya. 2001. T. 37, # 4. S. 562–566.
  • Lomov I. S. Metod spektralnogo razdeleniya peremennykh dlya neregulyarno vyrozhdayuschikhsya ellipticheskikh diffeerntsialnykh operatorov // Doklady RAN. 2001. T. 376, # 5. S. 593–596.

http://www.mathnet.ru/eng/person17511
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/221309

Publications in Math-Net.Ru
1. Estimates of speed of convergence and equiconvergence of spectral decomposition of ordinary differential operators
I. S. Lomov
Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:4 (2015),  405–418
2. Convergence of Biorthogonal Expansions of Functions on an Interval for Higher-Order Differential Operators
I. S. Lomov
Differ. Uravn., 41:5 (2005),  632–646
3. Integral Representations of a Partial Sum of a Biorthogonal Series for Higher-Order Differential Operators
I. S. Lomov
Differ. Uravn., 39:5 (2003),  602–611
4. Uniform Convergence of Biorthogonal Series for the Schrödinger Operator with Multipoint Boundary Conditions
I. S. Lomov
Differ. Uravn., 38:7 (2002),  890–896
5. The Method of Spectral Separation of Variables for Degenerating Elliptic Differential Operators
I. S. Lomov
Differ. Uravn., 38:6 (2002),  795–801
6. The Local Convergence of Biorthogonal Series Related to Differential Operators with Nonsmooth Coefficients: II
I. S. Lomov
Differ. Uravn., 37:5 (2001),  648–660
7. Conditions for Convergence of Biorthogonal Expansions of Functions on a Closed Interval
I. S. Lomov
Differ. Uravn., 37:4 (2001),  562–565
8. The Local Convergence of Biorthogonal Series Related to Differential Operators with Nonsmooth Coefficients: I
I. S. Lomov
Differ. Uravn., 37:3 (2001),  328–342
9. A Generalized Bessel Inequality for Ordinary Differential Operators with Nonsmooth Coefficients and a Generalization of the Riesz Theorem
I. S. Lomov
Differ. Uravn., 36:12 (2000),  1621–1630
10. The mean value formula of E. I. Moiseev for even-order differential equations with nonsmooth coefficients
I. S. Lomov
Differ. Uravn., 35:8 (1999),  1046–1057
11. On the influence of the degree of summability of coefficients of differential operators on the rate of convergence of spectral expansions. II
I. S. Lomov
Differ. Uravn., 34:8 (1998),  1066–1077
12. On the influence of the degree of summability of coefficients of differential operators on the rate of equiconvergence of spectral expansions. I
I. S. Lomov
Differ. Uravn., 34:5 (1998),  619–628
13. A coefficient condition for the convergence of biorthogonal expansions of functions in $\mathscr L^p(0,1)$
I. S. Lomov
Differ. Uravn., 34:1 (1998),  31–39
14. The basis property on compact sets of root functions of second-order differential operators
I. S. Lomov
Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 4,  40–52
15. On the rate of convergence of biorthogonal expansions of functions
I. S. Lomov
Differ. Uravn., 32:12 (1996),  1618–1629
16. On the rate of convergence of biorthogonal series connected with second-order differential operators
I. S. Lomov
Differ. Uravn., 32:1 (1996),  71–82
17. Small denominators in the analytic theory of degenerate differential equations
I. S. Lomov
Differ. Uravn., 29:12 (1993),  2079–2089
18. On the basis property of systems of nonregular root vectors of higher-order differential operators
I. S. Lomov
Differ. Uravn., 29:1 (1993),  74–86
19. A theorem on the unconditional basis property of root vectors of second-order weighted differential operators
I. S. Lomov
Differ. Uravn., 27:9 (1991),  1550–1563
20. The basis property of root vectors of loaded second-order differential operators on an interval
I. S. Lomov
Differ. Uravn., 27:1 (1991),  80–93
21. The basis property of root vectors of discontinuous second-order operators in a space of vector-functions
I. S. Lomov
Differ. Uravn., 26:1 (1990),  160–163
22. Properties of root functions of the Sturm–Liouville operator that are discontinuous on an everywhere dense set
I. S. Lomov
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 8,  35–44
23. The basis property of root functions of operators with multipoint boundary conditions
I. S. Lomov
Differ. Uravn., 25:6 (1989),  1053–1056
24. Construction of exact solutions of some singularly perturbed equations
I. S. Lomov
Differ. Uravn., 24:6 (1988),  1073–1075
25. Estimates of eigen- and associated functions of ordinary differential operators
I. S. Lomov
Differ. Uravn., 21:5 (1985),  903–906
26. Some properties of eigen- and associated functions of the Sturm–Liouville operator
I. S. Lomov
Differ. Uravn., 18:10 (1982),  1684–1694
27. Rate of equiconvergence of Fourier series in eigenfunctions of Sturm–Liouville operators in an integral metric
I. S. Lomov
Differ. Uravn., 18:9 (1982),  1480–1493
28. The unique solvability of the mixed problem for a hyperbolic equation with complex potential
I. S. Lomov
Differ. Uravn., 12:10 (1976),  1866–1876

29. Vladimir Aleksandrovich Il'in (on his 80th birthday)
O. M. Belotserkovskii, I. S. Lomov, E. I. Moiseev, Yu. S. Osipov, V. A. Sadovnichii, I. A. Shishmarev
Uspekhi Mat. Nauk, 63:6(384) (2008),  173–182

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018