Kirillov, Oleg Nikolayevich

Total publications: 83 (81)
in MathSciNet: 43 (43)
in zbMATH: 40 (39)
in Web of Science: 58 (57)
in Scopus: 69 (67)
Cited articles: 63
Citations in Web of Science: 1107
Citations in Scopus: 1204
Presentations: 2

Number of views:
This page:5723
Abstract pages:126
Full texts:45
Kirillov, Oleg Nikolayevich
Senior Lecturer
Candidate of physico-mathematical sciences (2000)
Speciality: 01.02.01 (Theoretical mechanics)
Birth date: 12.04.1972
Phone: + 44 191 243 7611
Keywords: nonselfadjoint operator, eigenvalue problems, geometric phases, dissipation-induced instabilities, magnetorotational instability, nonconservative systems.
UDC: 517.97, 517.91/.93, 517.958, 517.98, 519.6
MSC: 15A18, 34Dxx, 34Lxx, 34Bxx, 49Kxx, 74Hxx, 74Pxx


Dynamical systems, Lyapunov stability, Mechanics, Magnetohydrodynamics, Mathematical Physics


2018 — Senior Lecturer in Applied Mathematics, Northumbria University, UK
2018 — Member of the London Mathematical Society, UK
2018 — Fellow of the Institute of Mathematics and its Applications, UK
2018 — Fellow of the Higher Education Academy, UK
2018 — Edited Collection "Dynamic Stability and Bifurcation in Nonconservative Mechanics" CISM International Centre for Mechanical Sciences 586, Springer, Berlin
2018 — Co-organizer (together with O. Doare) of a Mini-Symposium 7-4 "Instabilities in Structural Mechanics and Fluid-Structure Interactions" at the EUROMECH ESMC, Bologna, Italy
2017 — Co-organizer (together with D. Bigoni) of a CISM-AIMETA Advanced School on "Dynamic stability and bifurcation in nonconservative mechanics ", International Centre for Mechanical Sciences CISM, Udine, Italy
2014 — Edited Collection "Nonlinear Physical systems: Spectral Analysis, Stability and Bifurcations", Wiley-ISTE, London
2013 — Associate Editor for the journal "Frontiers in Physics (Mathematical Physics)"
2013 — Monograph "Nonconservative Stability Problems of Modern Physics", De Gruyter Studies in Mathematical Physics 14, De Gruyter, Berlin, Boston
2012 — Organizing the BIRS Workshop on Spectral Analysis, Stability and Bifurcation in Modern Nonlinear Physical Systems, Banff, Canada
2010 — Japan Society for the Promotion of Science (JSPS) Fellowship
2005 — Alexander von Humboldt Fellowship
2003 — CRDF and Russian Federation Ministry of Education BRHE Post-Doctoral Fellowship
2002 — INTAS Young Scientists Fellowship
2001 — Diploma and Second Prize of the All-Russian Young Scientists Competition on Mechanics and Control dedicated to the 100th Anniversary of A. I. Lurie
2001 — Stipend of the Lomonosov Moscow State University for Talented Young Researchers and Teachers
2000 — Ph.D. in Theoretical Mechanics from the Lomonosov Moscow State University
1995 — MSc (with distinction) in Physics and Mathematics from the Moscow Institute of Physics and Technology (MIPT)
1989 — Diploma and Silver Medal from the specialized Minsk secondary school 50 with enhanced education in Physics and Mathematics.

Main publications:
  1. Kirillov, O.N., Nonconservative Stability Problems of Modern Physics, De Gruyter Studies in Mathematical Physics, 14, De Gruyter, Berlin, Boston, 2013
  2. Kirillov, O.N., Stefani, F., “Extending the range of the inductionless magnetorotational instability”, Physical Review Letters, 111:061103 (2013)
  3. Kirillov, O.N., “Stabilizing and destabilizing perturbations of PT-symmetric indefinitely damped systems”, Philosophical Transactions of the Royal Society A, 371:1989 (2013), 20120051
  4. Dietz, B., Harney, H. L., Kirillov, O. N., Miski-Oglu, M., Richter, A., and Schäfer, F., “Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation”, Physical Review Letters, 106:150403 (2011)
  5. Kirillov, O.N., Verhulst, F., “Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella?”, Zeitschrift fur angewandte Mathematik und Mechanik-ZAMM, 90:6 (2010), 462 – 488
List of publications on ZentralBlatt

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |

1. R. Zou, J. Labarbe, O. N. Kirillov, and Y. Fukumoto, “Analysis of azimuthal magnetorotational instability of rotating magnetohydrodynamic flows and Tayler instability via an extended Hain-Lüst equation”, Physical Review E, 101:1 (2020), 013201 , 22 pp., arXiv: 1907.05488  crossref  isi  scopus
2. J. Labarbe, O. N. Kirillov, “Membrane flutter induced by radiation of surface gravity waves on a uniform flow”, Journal of Fluid Mechanics, 2020 (to appear) , 27 pp., arXiv: 2004.11736

3. D. Bigoni, O. N. Kirillov (eds.), Dynamic Stability and Bifurcation in Nonconservative Mechanics, CISM International Centre for Mechanical Sciences, Courses and Lectures, 586, Springer, Berlin, 2019 , 197 pp.  crossref  mathscinet
4. O. N. Kirillov, “Classical results and modern approaches to nonconservative stability”: D. Bigoni, O. N. Kirillov, Dynamic Stability and Bifurcation in Nonconservative Mechanics, CISM International Centre for Mechanical Sciences, Courses and Lectures, 586, eds. D. Bigoni, O. N. Kirillov, Springer, Berlin, 2019, 129-190  crossref  mathscinet  scopus (cited: 1)

5. Davide Bigoni, Diego Misseroni, Mirko Tommasini, Oleg N. Kirillov, and Giovanni Noselli, “Detecting singular weak-dissipation limit for flutter onset in reversible systems”, Physical Review E, 97:2 (2018), 023003 , 15 pp.  crossref  isi (cited: 4)  scopus (cited: 7)
6. D. Bigoni, O.N. Kirillov, D. Misseroni, G. Noselli, M. Tommasini, “Flutter and divergence instability in the Pfluger column: Experimental evidence of the Ziegler destabilization paradox.”, Journal of the Mechanics and Physics of Solids, 116 (2018), 99-116  crossref  mathscinet  isi (cited: 9)  scopus (cited: 9)
7. O. N. Kirillov, “Locating the sets of exceptional points in dissipative systems and the self-stability of bicycles”, Entropy, 20:7 (2018), 502 , 16 pp.  crossref  isi  scopus
8. O. N. Kirillov, “Dissipation-Induced Instabilities in Magnetized Flows”, Journal of Mathematical Sciences, 235:4 (2018), 455–472  crossref  mathscinet  zmath  scopus

9. Oleg N. Kirillov, Innocent Mutabazi, “Short wavelength local instabilities of a circular Couette flow with radial temperature gradient”, J. Fluid Mech., 818 (2017), 319–343 , arXiv: 1612.03495v1  mathnet  crossref  mathscinet  isi (cited: 5)  elib  scopus (cited: 4)
10. F. Stefani, T. Albrecht, R. Arlt, M. Christen, A. Gailitis, M. Gellert, A. Giesecke, O. Goepfert, J. Herault, O. N. Kirillov, G. Mamatsashvili, J. Priede, G. Rudiger, M. Seilmayer, A. Tilgner, T. Vogt, “Magnetic field dynamos and magnetically triggered flow instabilities”, IoP Conference Series, Materials Science and Engineering, 228 (2017), 012002 , 17 pp., arXiv: 1705.08189v1  crossref  isi (cited: 2)  scopus (cited: 2)
11. O. N. Kirillov, D. Bigoni, D. Misseroni, G. Noselli, M. Tommasini, “Experiments on the Pfluger column: flutter from friction.”, First International Symposium on Flutter and its Application, Volume JAXA-SP-16-008E (15th-17th May , 2016, Mielparque-Tokyo, Minato-ku, Tokyo, Japan.), JAXA, 2017, 151-155
12. Oleg Kirillov, Mark Levi, “A Coriolis force in an inertial frame”, Nonlinearity, 30:3 (2017), 1109–1119  mathnet  crossref  mathscinet  isi (cited: 4)  elib  scopus (cited: 5)
13. Oleg N. Kirillov, “Singular diffusionless limits of double-diffusive instabilities in magnetohydrodynamics”, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci., 473:2205 (2017), 20170344 , 27 pp., arXiv: 1610.06970v2  mathnet  crossref  mathscinet  zmath  isi (cited: 8)  scopus (cited: 6)

14. Oleg N. Kirillov, Mark Levi, “Rotating saddle trap as Foucault's pendulum”, Am. J. Phys., 84:1 (2016), 26–31  mathnet  crossref  isi (cited: 13)  elib  scopus (cited: 14)
15. Mirko Tommasini, Oleg N. Kirillov, Diego Misseroni, Davide Bigoni, “The destabilizing effect of external damping: Singular flutter boundary for the Pflüger column with vanishing external dissipation”, J. Mech. Phys. Solids, 91 (2016), 204–215  mathnet  crossref  mathscinet  isi (cited: 15)  elib  scopus (cited: 19)
16. Davide Bigoni, Oleg Kirillov, Diego Misseroni, Mirko Tommasini, Giovanni Noselli, “Experiments on the Pfluger column: Flutter from friction”, The first International Symposium on Flutter and its Application (ISFA2016) (Tokyo, Japan, May 15–17 2016), Japan Research Association on Flutter (JRAF), 2016, 1–2
17. O. N. Kirillov, “Dissipation-induced instabilities in magnetized flows”, CMFD, 60 (2016), 82–101  mathnet

18. Frank Stefani, Oleg N. Kirillov, “Destabilization of rotating flows with positive shear by azimuthal magnetic fields”, Phys. Rev. E (3), 92:5 (2015), 51001(R) , 4 pp.  mathnet  crossref  isi (cited: 21)  elib  scopus (cited: 17)

19. O. N. Kirillov, D. E. Pelinovsky (eds.), Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations, Mechanical Engineering and Solid Mechanics Series, John Wiley & Sons, Inc., Hoboken, NJ; ISTE, London, 2014 , 448 pp.  crossref  mathscinet  zmath  scopus (cited: 4)
20. O. N. Kirillov, N. Challamel, F. Darve, J. Lerbet, F. Nicot, “Singular divergence instability thresholds of kinematically constrained circulatory systems”, Phys. Lett. A, 378 (2014), 147–152  crossref  zmath  isi (cited: 2)  elib (cited: 1)  scopus (cited: 2)
21. O. N. Kirillov, F. Stefani, Y. Fukumoto, “Local instabilities in magnetized rotational flows: a short-wavelength approach”, J. Fluid Mech., 760 (2014), 591–633  crossref  mathscinet  zmath  isi (cited: 25)  elib  scopus (cited: 23)
22. O. N. Kirillov, F. Stefani, Y. Fukumoto, “Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence”, Fluid Dyn. Res., 46 (2014), 031403 , 14 pp.  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 5)
23. J. Lerbet, M. Aldowaji, N. Challamel, O. N. Kirillov, F. Nicot, F. Darve, “Geometric degree of non-conservativity”, Math. Mech. Complex Syst., 2:2 (2014), 123–139  crossref  mathscinet  zmath  elib  scopus (cited: 8)
24. I. Hoveijn, O. N. Kirillov, “Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance”, Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations (Spectral Analysis, Stability and Bifurcation in Modern Nonlinear Physical Systems (12w5073) BIRS, Banff, Alberta, Canada, November 4 – November 9, 2012), eds. O. N. Kirillov, D. E. Pelinovsky, John Wiley & Sons, London, 2014, 155–175  crossref  mathscinet  elib  scopus

25. O. N. Kirillov, F. Stefani, “Extending the range of the inductionless magnetorotational instability”, Phys. Rev. Lett., 111:6 (2013), 061103  crossref  adsnasa  isi (cited: 23)  scopus (cited: 22)
26. O. N. Kirillov, “Stabilizing and destabilizing perturbations of PT-symmetric indefinitely damped systems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 20120051  crossref  mathscinet  zmath  adsnasa  isi (cited: 8)  elib  scopus (cited: 10)
27. O. N. Kirillov, Nonconservative stability problems of modern physics, De Gruyter Studies in Mathematical Physics, 14, De Gruyter, Berlin, 2013 , xviii+429 pp.  crossref  mathscinet  zmath
28. J. Lerbet, O. Kirillov, M. Aldowaji, N. Challamel, F. Nicot, F. Darve, “Additional constraints may soften a non-conservative structural system: Buckling and vibration analysis”, International Journal of Solids and Structures, 50 (2013), 363–370  crossref  isi (cited: 10)  scopus (cited: 9)
29. O. N. Kirillov, “Exceptional and diabolical points in stability questions”, Fortschr. Phys., 61:2-3 (2013), 205–224  crossref  mathscinet  zmath  adsnasa  isi (cited: 14)  elib  scopus (cited: 13)
30. O. N. Kirillov, M. L. Overton, “Robust stability at the swallowtail singularity”, Frontiers in Physics, 1 (2013), 24 , 9 pp.  crossref

31. O. N. Kirillov, F. Stefani, “WKB thresholds of standard, helical, and azimuthal magnetorotational instability”, Proceedings of the International Astronomical Union, 8 (2012), 233–234  crossref  scopus (cited: 2)
32. O. N. Kirillov, F. Stefani, Y. Fukumoto, “A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit”, The Astrophysical Journal, 756 (2012), 83  crossref  adsnasa  isi (cited: 19)  elib  scopus (cited: 21)
33. O. N. Kirillov, “PT-symmetry, indefinite damping and dissipation-induced instabilities”, Phys. Lett. A, 376:15 (2012), 1244–1249  crossref  zmath  adsnasa  isi (cited: 8)  elib (cited: 4)  scopus (cited: 6)
34. O. N. Kirillov, F. Stefani, “Standard and helical magnetorotational instability: How singularities create paradoxical phenomena in MHD”, Acta Appl. Math., 120:1 (2012), 177–198  crossref  mathscinet  zmath  isi (cited: 7)  elib (cited: 3)  scopus (cited: 7)
35. O. N. Kirillov, “Erratum to: Brouwer's problem on a heavy particle in a rotating vessel: Wave propagation, ion traps, and rotor dynamics [Physics Letters A 375 (2011) 1653–1660]”, Phys. Lett. A, 376 (2012), 665–666  crossref  zmath  adsnasa  isi  scopus

36. O. N. Kirillov, D. E. Pelinovsky, G. Schneider, “Paradoxical transitions to instabilities in hydromagnetic Couette-Taylor flows”, Physical Review E, 84 (2011), 065301  crossref  adsnasa  isi (cited: 7)  scopus (cited: 6)
37. O. N. Kirillov, F. Stefani, “Paradoxes of magnetorotational instability and their geometrical resolution”, Physical Review E, 84:3 (2011), 036304  crossref  adsnasa  isi (cited: 15)  elib (cited: 7)  scopus (cited: 15)
38. O. N. Kirillov, “Brouwer's problem on a heavy particle in a rotating vessel: wave propagation, ion traps, and rotor dynamics”, Physics Letters A, 375 (2011), 1653-1660  crossref  zmath  adsnasa  isi (cited: 13)  elib (cited: 5)  scopus (cited: 13)
39. B. Dietz, H. L. Harney, O. N. Kirillov, M. Miski-Oglu, A. Richter, F. Schaefer, “Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation”, Physical Review Letters, 106:15 (2011), 150403  crossref  adsnasa  isi (cited: 70)  elib (cited: 32)  scopus (cited: 69)
40. O. N. Kirillov, F. Verhulst, “Dissipation-induced instabilities and symmetry”, Acta Mechanica Sinica, 27:1 (2011), 2–6  crossref  mathscinet  zmath  adsnasa  isi (cited: 2)  elib  scopus (cited: 2)
41. O. N. Kirillov, “Singularities in Structural Optimization of the Ziegler Pendulum”, Acta Polytechnica, 51:4 (2011), 32–43  elib (cited: 1)  scopus (cited: 1)
42. O. N. Kirillov, “Sensitivity of sub-critical mode-coupling instabilities in non-conservative rotating continua to stiffness and damping modifications”, International Journal of Vehicle Structures and Systems, 3:1 (2011), 1–13  crossref  scopus (cited: 2)

43. O. N. Kirillov, F. Stefani, “On the relation of standard and helical magnetorotational instability”, The Astrophysical Journal, 712 (2010), 52–68  crossref  mathscinet  adsnasa  isi (cited: 29)  elib (cited: 14)  scopus (cited: 31)
44. I. Hoveijn, O. N. Kirillov, “Singularities on the boundary of the stability domain near 1:1-resonance”, Journal of Differential Equations, 248:10 (2010), 2585–2607  crossref  mathscinet  zmath  isi (cited: 10)  elib  scopus (cited: 11)
45. O. N. Kirillov, F. Verhulst, “Paradoxes of dissipation-induced destabilization or who opened Whitney.s umbrella?”, Zeitschrift für Angewandte Mathematik und Mechanik-ZAMM, 90:6 (2010), 462–488  crossref  mathscinet  zmath  adsnasa  isi (cited: 63)  elib  scopus (cited: 76)
46. O. N. Kirillov, “Eigenvalue bifurcation in multiparameter families of non-self-adjoint operator matrices”, Zeitschrift für Angewandte Mathematik und Physik-ZAMP, 61:2 (2010), 221–234  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  elib  scopus (cited: 5)

47. F. Verhulst, O. N. Kirillov, “Bottema opende Whitney.s paraplu”, Nieuw Archief voor Wiskunde, 5/10:4 (2009), 250–254  mathscinet  zmath
48. O. N. Kirillov, “Campbell diagrams of weakly anisotropic flexible rotors”, Proceedings of the Royal Society A, 465:2109 (2009), 2703–2723  crossref  mathscinet  zmath  isi (cited: 19)  scopus (cited: 26)
49. O. N. Kirillov, “Unfolding the conical zones of the dissipation-induced subcritical flutter for the rotationally symmetrical gyroscopic systems”, Physics Letters A, 373:10 (2009), 940–945  crossref  zmath  adsnasa  isi (cited: 7)  elib (cited: 6)  scopus (cited: 6)
50. O. N. Kirillov, “Perspectives and obstacles for optimization of brake pads with respect to stability criteria”, International Journal of Vehicle Design, 51:1/2 (2009), 143–167  crossref  isi (cited: 5)  scopus (cited: 4)
51. O. N. Kirillov, U. Guenther, F. Stefani, “Determining role of Krein signature for three dimensional Arnold tongues of oscillatory dynamos”, Physical Review E, 79:1 (2009), 016205  crossref  mathscinet  adsnasa  isi (cited: 14)  elib (cited: 10)  scopus (cited: 13)
52. O. N. Kirillov, “How to play a disc brake: A dissipation-induced squeal”, SAE International Journal of Passenger Cars. Mechanical Systems, 1:1 (2009), 863–876  crossref  scopus
53. G. Spelsberg-Korspeter, D. Hochlenert, O. N. Kirillov, P. Hagedorn, “In- and out-of-plane vibrations of a rotating plate with frictional contact: Investigations on squeal phenomena”, Transactions of the ASME. Journal of Applied Mechanics, 76:4 (2009), 041006  crossref  adsnasa  isi (cited: 32)  scopus (cited: 39)

54. O. N. Kirillov, “Subcritical flutter in the acoustics of friction”, Proceedings of the Royal Society A, 464:2097 (2008), 2321–2339  crossref  mathscinet  zmath  isi (cited: 24)  scopus (cited: 28)
55. G. Spelsberg-Korspeter, O. N. Kirillov, P. Hagedorn, “Modeling and stability analysis of an axially moving beam with frictional contact”, Transactions of the ASME. Journal of Applied Mechanics, 75:3 (2008), 031001  crossref  adsnasa  isi (cited: 25)  scopus (cited: 30)

56. O. N. Kirillov, “Gyroscopic stabilization in the presence of nonconservative forces”, Doklady Mathematics, 76:2 (2007), 780–785  crossref  mathscinet  zmath  isi (cited: 28)  elib (cited: 26)  scopus (cited: 32)
57. O. N. Kirillov, “Bifurcation of the roots of the characteristic polynomial and destabilization paradox in friction induced oscillations”, Theoretical and Applied Mechanics, 34:2 (2007), 87–109  crossref  mathscinet  zmath  adsnasa
58. O. N. Kirillov, “On the stability of nonconservative systems with small dissipation”, Journal of Mathematical Sciences, 145:5 (2007), 5260–5270  crossref  mathscinet  zmath  scopus (cited: 4)
59. O. N. Kirillov, “Destabilization paradox due to breaking the Hamiltonian and reversible symmetry”, International Journal of Non-Linear Mechanics, 42:1 (2007), 71–87  crossref  mathscinet  zmath  adsnasa  isi (cited: 47)  scopus (cited: 51)
60. U. Guenther, O. N. Kirillov, B. F. Samsonov, F. Stefani, “The spherically-symmetric alpha 2-dynamo and some of its spectral peculiarities”, Acta Polytechnica, 47:2-3 (2007), 75–81

61. O. N. Kirillov, “Gyroscopic stabilization of non-conservative systems”, Physics Letters A, 359:3 (2006), 204–210  crossref  zmath  adsnasa  isi (cited: 23)  elib (cited: 26)  scopus (cited: 26)
62. U. Guenther, O. N. Kirillov, “A Krein space related perturbation theory for MHD alpha 2-dynamos and resonant unfolding of diabolical points”, Journal of Physics A: Mathematical and General, 39 (2006), 10057–10076  crossref  mathscinet  zmath  adsnasa  isi (cited: 36)  scopus (cited: 37)
63. A. A. Mailybaev, O. N. Kirillov, A. P. Seyranian, “Berry phase around degeneracies”, Doklady Mathematics, 73:1 (2006), 129–133  crossref  mathscinet  zmath  isi (cited: 9)  elib (cited: 7)  scopus (cited: 9)

64. O. N. Kirillov, A. A. Mailybaev, A. P. Seyranian, “Singularities of energy surfaces under non-Hermitian perturbations”, Doklady Physics, 50:11 (2005), 577–582  crossref  mathscinet  adsnasa  isi (cited: 4)  elib (cited: 3)  scopus (cited: 3)
65. A. A. Mailybaev, O. N. Kirillov, A. P. Seyranian, “Geometric phase around exceptional points”, Physical Review A, 72 (2005), 014104  crossref  adsnasa  isi (cited: 92)  scopus (cited: 92)
66. O. N. Kirillov, A. A. Mailybaev, A. P. Seyranian, “Unfolding of eigenvalue surfaces near a diabolic point due to a complex perturbation”, Journal of Physics A: Mathematical and General, 38:24 (2005), 5531–5546  crossref  mathscinet  zmath  adsnasa  isi (cited: 38)  scopus (cited: 42)
67. A. P. Seyranian, O. N. Kirillov, A. A. Mailybaev, “Coupling of eigenvalues of complex matrices at diabolic and exceptional points”, Journal of Physics A: Mathematical and General, 38:8 (2005), 1723–1740  crossref  mathscinet  zmath  adsnasa  isi (cited: 80)  scopus (cited: 83)
68. O. N. Kirillov, A. P. Seyranian, “Instability of distributed nonconservative systems caused by weak dissipation”, Doklady Mathematics, 71:3 (2005), 470–475  zmath  isi (cited: 9)  elib (cited: 9)  scopus (cited: 9)
69. O. N. Kirillov, A. O. Seyranian, “The effect of small internal and external damping on the stability of distributed non-conservative systems”, Journal of Applied Mathematics and Mechanics, 69:4 (2005), 529–552  crossref  mathscinet  zmath  adsnasa  isi (cited: 58)  scopus (cited: 62)
70. O. N. Kirillov, “A theory of the destabilization paradox in non-conservative systems”, Acta Mechanica, 174:3-4 (2005), 145–166  crossref  zmath  isi (cited: 38)  elib (cited: 33)  scopus (cited: 42)
71. O. N. Kirillov, A. P. Seyranian, “Stabilization and destabilization of a circulatory system by small velocity-dependent forces”, Journal of Sound and Vibration, 283:3-5 (2005), 781–800  crossref  mathscinet  zmath  adsnasa  isi (cited: 25)  scopus (cited: 26)

72. O. N. Kirillov, “Destabilization paradox”, Doklady Physics, 49:4 (2004), 239–245  crossref  mathscinet  adsnasa  isi (cited: 24)  scopus (cited: 24)
73. O. N. Kirillov, A. P. Seyranian, “Collapse of the Keldysh chains and stability of continuous non-conservative systems”, SIAM Journal on Applied Mathematics, 64:4 (2004), 1383–1407  crossref  mathscinet  zmath  isi (cited: 23)  scopus (cited: 23)

74. A. P. Seyranian, O. N. Kirillov, “Effect of small dissipative and gyroscopic forces on the stability of nonconservative systems”, Doklady Physics, 48:12 (2003), 679–684  crossref  mathscinet  adsnasa  isi (cited: 6)  scopus (cited: 7)

75. O. N. Kirillov, A. P. Seyranian, “Solution to the Herrmann-Smith problem”, Doklady Physics, 47:10 (2002), 767–771  crossref  mathscinet  adsnasa  isi (cited: 11)  scopus (cited: 15)
76. O. N. Kirillov, A. P. Seyranian, “Metamorphoses of characteristic curves in circulatory systems”, Journal of Applied Mathematics Mechanics, 66:3 (2002), 371–385  crossref  mathscinet  zmath  adsnasa  isi (cited: 6)  scopus (cited: 9)
77. O. N. Kirillov, A. P. Seyranian, “Collapse of Keldysh chains and the stability of non-conservative systems”, Doklady Mathematics, 66:1 (2002), 127–131  mathscinet  zmath  isi (cited: 5)  scopus (cited: 3)
78. O. N. Kirillov, A. P. Seyranian, “A non-smooth optimization problem”, Moscow University Mechanics Bulletin, 57:3 (2002), 1–6  zmath
79. O. N. Kirillov, A. P. Seyranian, “On a nonsmooth optimization problem”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2002, no. 3, 29–34  mathnet  mathscinet  zmath

80. A. P. Seyranian, O. N. Kirillov, “Bifurcation diagrams and stability boundaries of circulatory systems”, Theoretical and Applied Mechanics, 26 (2001), 135–168  mathscinet  zmath
81. O. N. Kirillov, A. P. Seyranian, “Overlapping of frequency curves in non-conservative systems”, Doklady Physics, 46:3 (2001), 184–189  crossref  mathscinet  adsnasa  isi (cited: 4)  scopus (cited: 2)

82. O. N. Kirillov, “Optimization of stability of the flying bar”, Young Scientists Bulletin. Applied Mathematics and Mechanics, 1:1 (1999), 64–78

83. O. N. Kirillov, A. P. Seyranian, “Optimization of Stability of a Flexible Missile under Follower Thrust”, AIAA Paper 98-4969, 7TH AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (St. Louis, MO, USA, September 2–4, 1998), AIAA,, 1998, 2063–2073  crossref  scopus (cited: 10)

Presentations in Math-Net.Ru
1. Минимизация спектральной абсциссы и устойчивость велосипеда
O. N. Kirillov
International School of Young Mechanics and Mathematicians "Modern nonlinear dynamics"
November 7, 2019 11:45   
2. О гpаницах областей устойчивости циркуляционных систем
O. N. Kirillov
Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov
September 17, 1999 18:30

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020