RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Matiyasevich Yuri Vladimirovich

Statistics Math-Net.Ru
Total publications: 50
Scientific articles: 37
Presentations: 23

Number of views:
This page:7281
Abstract pages:17546
Full texts:5755
References:673
Matiyasevich Yuri Vladimirovich
Member of the Russian Academy of Sciences
Professor
Doctor of physico-mathematical sciences (1973)
Birth date: 2.03.1947
Phone: +7 (812) 571 43 92
Fax: +7 (812) 310 53 77
E-mail:
Website: http://logic.pdmi.ras.ru/~yumat
Keywords: Diophantine equations; Hilbert's tenth problem; decision problems in algebra; graph colorings; Riemann's zeta function.
UDC: 510.53, 511.216, 511.331, 511.515, 511.53, 519.1, 51.01, 518.5, 511.5, 510.6, 511, 519.17, 519.65, 519.644.2, 510.57
MSC: 03d03, 03d25, 03d35, 03d40, 05c15, 11d72, 11m26, 11u05

Subject:

Decision problems in algebra and number theory.

Biography

Graduated from Faculty of Mathematics and Mechanics of Leningrad State University in 1969. Ph. D. thesis was defended in 1970. D. Sci. thesis was defended in 1972. Published more than 100 papers and one book.

   
Main publications:
  1. Matiyasevich Yu. V., Hilbert's Tenth Problem, Cambridge, MA, MIT Press, 1993  mathscinet  zmath

http://www.mathnet.ru/eng/person17715
http://scholar.google.com/citations?user=WnOjCtEAAAAJ&hl=en
http://zbmath.org/authors/?q=ai:matiyasevich.yuri-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/194889
http://elibrary.ru/author_items.asp?authorid=2790
http://orcid.org/0000-0001-7046-3746

Publications in Math-Net.Ru
1. A few factors from the Euler product are sufficient for calculating the zeta function with high precision
Yu. V. Matiyasevich
Tr. Mat. Inst. Steklova, 299 (2017),  192–202
2. Riemann’s hypothesis in terms of the eigenvalues of special Hankel matrices
Yu. V. Matiyasevich
Sovrem. Probl. Mat., 23 (2016),  87–101
3. Calculation of Belyǐ functions for trees with weighted edges
Yu. Matiyasevich
Zap. Nauchn. Sem. POMI, 446 (2016),  122–138
4. Riemann's zeta function and finite Dirichlet series
Yu. V. Matiyasevich
Algebra i Analiz, 27:6 (2015),  174–198
5. Yet Another Representation for Reciprocals of the Nontrivial Zeros of the Riemann Zeta Function
Yu. V. Matiyasevich
Mat. Zametki, 97:3 (2015),  471–474
6. What can and cannot be done with Diophantine problems
Yu. V. Matiyasevich
Tr. Mat. Inst. Steklova, 275 (2011),  128–143
7. Alternatives to the Euler–Maclaurin Formula for Calculating Infinite Sums
Yu. V. Matiyasevich
Mat. Zametki, 88:4 (2010),  543–548
8. Towards finite-fold Diophantine representations
Yu. Matiyasevich
Zap. Nauchn. Sem. POMI, 377 (2010),  78–90
9. A Diophantine Representation of Bernoulli Numbers and Its Applications
Yu. V. Matiyasevich
Tr. Mat. Inst. Steklova, 242 (2003),  98–102
10. One Probabilistic equivalent of the four color conjecture
Yu. V. Matiyasevich
Teor. Veroyatnost. i Primenen., 48:2 (2003),  411–416
11. Some algebraic methods for calculation of the number of colorings of a graph
Yu. V. Matiyasevich
Zap. Nauchn. Sem. POMI, 283 (2001),  193–205
12. A new technique for obtaining Diophantine representations via elimination of bounded universal quantifiers
Yu. V. Matiyasevich
Zap. Nauchn. Sem. POMI, 220 (1995),  83–92
13. Standardization of microcomputer software using virtual-machine design
Yu. V. Matiyasevich, A. N. Terekhov, B. A. Fedotov
Avtomat. i Telemekh., 1990, no. 5,  168–175
14. A relationship between certain sums over trivial and nontrivial zeros of the Riemann zeta-function
Yu. V. Matiyasevich
Mat. Zametki, 45:2 (1989),  65–70
15. Diophantine complexity
Yu. V. Matijasevich
Zap. Nauchn. Sem. LOMI, 174 (1988),  122–131
16. Studies in certain algorithmic problems of algebra and number theory
Yu. V. Matiyasevich
Trudy Mat. Inst. Steklov., 168 (1984),  218–235
17. An analytic representation for the sum of values inverse to nontrivial zeros of the Riemann zeta function
Yu. V. Matiyasevich
Trudy Mat. Inst. Steklov., 163 (1984),  181–182
18. Primes are nonnegative values of a polynomial in 10 variables
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 68 (1977),  62–82
19. A class of primality criteria formulated in terms of the divisibility of binomial coefficients
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 67 (1977),  167–183
20. A new proof of the theorem on exponential diophantine representation of enumerable sets
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 60 (1976),  75–92
21. On metamathematical approach to proving theorems of discrete mathematics
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 49 (1975),  31–50
22. A proof scheme in discrete mathematics
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 40 (1974),  94–100
23. The existence of non-effectivizable estimates in the theory of exponential Diophantine equations
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 40 (1974),  77–93
24. The application of the methods of the theory of logical derivation to graph theory
Yu. V. Matiyasevich
Mat. Zametki, 12:6 (1972),  781–790
25. Diophantine representation of enumerable predicates
Yu. V. Matiyasevich
Mat. Zametki, 12:1 (1972),  115–120
26. Diophantine sets
Yu. V. Matiyasevich
Uspekhi Mat. Nauk, 27:5(167) (1972),  185–222
27. Arithmetical representations of recursively enumerable sets with a small number of quantifiers
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 32 (1972),  77–84
28. Diophantine representation of the set of prime numbers
Yu. V. Matiyasevich
Dokl. Akad. Nauk SSSR, 196:4 (1971),  770–773
29. Diophantine representation of enumerable predicates
Yu. V. Matiyasevich
Izv. Akad. Nauk SSSR Ser. Mat., 35:1 (1971),  3–30
30. On real-time recognition of the relation of occurrence
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 20 (1971),  104–114
31. A sufficient condition for the recursive convergence of a monotone sequence
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 20 (1971),  97–103
32. The Diophantineness of enumerable sets
Yu. V. Matiyasevich
Dokl. Akad. Nauk SSSR, 191:2 (1970),  279–282
33. Arithmetical representations of powers
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 8 (1968),  159–165
34. Two reductions of Hilbert's tenth problem
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 8 (1968),  145–158
35. A connection between systems of words-and-lengths equations and Hilbert's tenth problem
Yu. V. Matiyasevich
Zap. Nauchn. Sem. LOMI, 8 (1968),  132–144
36. Simple examples of unsolvable associative calculi
Yu. V. Matiyasevich
Dokl. Akad. Nauk SSSR, 173:6 (1967),  1264–1266
37. Simple examples of unsolvable canonical calculi
Yu. V. Matiyasevich
Trudy Mat. Inst. Steklov., 93 (1967),  50–88

38. Валентин Федорович Колчин (1934–2016)
S. A. Aivazyan, V. B. Alekseev, V. A. Vatutin, M. M. Glukhov, A. A. Grusho, V. A. Emelichev, A. M. Zubkov, G. I. Ivchenko, O. M. Kasim-zade, V. A. Kashtanov, I. N. Kovalenko, V. B. Kudryavtsev, V. V. Mazalov, Yu. V. Matiyasevich, Yu. I. Medvedev, V. G. Mikhailov, Yu. L. Pavlov, B. A. Pogorelov, È. A. Primenko, L. Ya. Savel'ev, V. N. Sachkov, S. A. Stepanov, V. P. Chistyakov, V. N. Chubarikov
Diskr. Mat., 28:4 (2016),  3–5
39. Алан Тьюринг и теория чисел
Yu. V. Matiyasevich
Mat. Pros., Ser. 3, 17 (2013),  6–34
40. Nikolai Aleksandrovich Shanin (obituary)
M. A. Vsemirnov, È. A. Hirsch, D. Yu. Grigor'ev, G. V. Davydov, E. Ya. Dantsin, I. D. Zaslavskii, È. F. Karavaev, B. Yu. Konev, N. K. Kossovskii, V. A. Lifschitz, M. Margenstern, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, R. Pliuškevičius, A. O. Slisenko, S. V. Solov'ev, V. P. Chernov
Uspekhi Mat. Nauk, 68:4(412) (2013),  173–176
41. Mikhail Abramovich Taitslin (1936–2013)
D. A. Archangelsky, B. S. Baizhanov, O. V. Belegradek, V. Ya. Belyaev, L. A. Bokut, M. K. Valiev, S. K. Vodopyanov, M. Gitik, Yu. S. Gurevich, D. O. Daderkin, A. M. Dekhtyar, M. I. Dekhtyar, A. Ya. Dikovsky, S. M. Dudakov, E. I. Zelmanov, B. I. Zilber, S. L. Krushkal, S. S. Kutateladze, Yu. V. Matiyasevich, G. E. Mints, I. Kh. Musikaev, A. K. Rebrov, Yu. G. Reshetnyak, A. L. Semenov, A. P. Stolboushkin, I. A. Taimanov, B. A. Trakhtenbrot
Sib. Èlektron. Mat. Izv., 10 (2013),  54–65
42. Preface
Juhani Karhumäki, Yuri Matiyasevich
Zap. Nauchn. Sem. POMI, 402 (2012),  5–8
43. Preface
D. R. Heath-Brown, A. MacIntyre, Yu. I. Manin, Yu. V. Matiyasevich, B. Z. Moroz
Zap. Nauchn. Sem. POMI, 377 (2010),  5
44. Preface
Yu. V. Matiyasevich
Zap. Nauchn. Sem. POMI, 304 (2003),  5–6
45. Nikolai Aleksandrovich Shanin (on his 80th birthday)
M. A. Vsemirnov, E. A. Hirsch, D. Yu. Grigor'ev, G. V. Davydov, E. Ya. Dantsin, A. A. Ivanov, B. Yu. Konev, V. A. Lifshits, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko
Uspekhi Mat. Nauk, 56:3(339) (2001),  181–184
46. R. Penrose. “The emperor's new mind”. Oxford University Press, Oxford etc., 1989, xiii+466 pp.
Yu. V. Matiyasevich
Algebra i Analiz, 3:5 (1991),  254–265
47. Nikolai Aleksandrovich Shanin (on his seventieth birthday)
Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko
Uspekhi Mat. Nauk, 45:1(271) (1990),  205–206
48. Sergei Yur'evich Maslov (obituary)
G. V. Davydov, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko, A. V. Sochilina, N. A. Shanin
Uspekhi Mat. Nauk, 39:2(236) (1984),  129–130
49. Nikolai Aleksandrovich Shanin (on his sixtieth birthday)
S. Yu. Maslov, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko
Uspekhi Mat. Nauk, 35:2(212) (1980),  241–245
50. Editors' preface
Yu. V. Matiyasevich, A. O. Slisenko
Zap. Nauchn. Sem. LOMI, 20 (1971),  7

Presentations in Math-Net.Ru
1. Computational aspect of Hamburger’s theorem
Yu. V. Matiyasevich
XV International Conference «Algebra, Number Theory and Discrete Geometry: modern problems and applications», dedicated to the centenary of the birth of the Doctor of Physical and Mathematical Sciences, Professor of the Moscow State University Korobov Nikolai Mikhailovich
May 28, 2018 12:20
2. Approximation of the zeta function via finite Euler products
Yu. V. Matiyasevich
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 24, 2017 12:40   
3. Calculation of Riemann's zeta function via interpolating determinants
Yu. V. Matiyasevich
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
April 1, 2013 13:00   
4. Some non-standard methods to perform calculations with Riemann's Zeta function
Yu. V. Matiyasevich
Globus Seminar
November 22, 2012 15:40   
5. Alan Turing and number theory (to the centenary of Alan Turing's birth)
Yu. V. Matiyasevich
Meetings of the St. Petersburg Mathematical Society
October 9, 2012 18:00   
6. Alan Turing and Number Theory
Yu. V. Matiyasevich
June 23, 2012 11:30
7. A method of computing the zeros of the Riemann zeta-function
Yu. V. Matiyasevich
Internet video conference "Day of Mathematics and Mechanics"
September 19, 2011 12:30
8. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 5
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 28, 2011 11:15   
9. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 4
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 27, 2011 17:00   
10. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 3
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 25, 2011 17:00   
11. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 2
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 24, 2011 17:00   
12. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 1
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 22, 2011 12:45   
13. What can we do with Diophantine problems and what we cannot do
Yuri Matiyasevich
International conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS" dedicated to the 120th anniversary of Boris Delone (1890–1980)
August 20, 2010 11:10   
14. Mathematical proof: yesterday, today, tomorrow
Yu. V. Matiyasevich
Meetings of the St. Petersburg Mathematical Society
March 23, 2010
15. Hilbert's tenth problem and the models of computational processes
Yu. V. Matiyasevich
Traditional Christmas session MIAN-POMI, 2009 "Logic and Theoretical Computer Science"
December 16, 2009 16:05   
16. Hidden life of Riemann's zeta function
Yu. V. Matiyasevich
Steklov Mathematical Institute Seminar
December 18, 2008 16:00   
17. Hilbert's tenth problem III
Yu. V. Matiyasevich
June 6, 2008 10:00
18. Hilbert's tenth problem II
Yu. V. Matiyasevich
June 5, 2008 10:00
19. Hilbert's tenth problem I
Yu. V. Matiyasevich
June 3, 2008 14:30
20. Hidden life of Riemann's zeta function
Yu. V. Matiyasevich
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
October 8, 2007
21. Алгебра – это геометрия для лентяев. Лекция 2
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2004
July 25, 2004 15:30   
22. Алгебра – это геометрия для лентяев. Лекция 1
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2004
July 24, 2004 15:30   
23. Tenth Hilbert problem: what one can and can not do with Diophantine equations
Yu. V. Matiyasevich
Meetings of the St. Petersburg Mathematical Society
September 19, 2003

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018