RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Izmailov Alexey Feridovich

Statistics Math-Net.Ru
Total publications: 56
Scientific articles: 56

Number of views:
This page:1399
Abstract pages:10045
Full texts:3124
References:1410
Izmailov Alexey Feridovich
Professor
Doctor of physico-mathematical sciences (1998)
Speciality: 05.13.17; 01.01.09 (Theoretical foundation for informatics; Discrete mathematics and mathematical cybernetics)
Birth date: 30.09.1967
E-mail:
Keywords: nonlinear equation; optimization problem; variational problem; complementarity problem; Newton-type method; regularity; singular solution

Subject:

optimization; variational analysis; nonlinear analysis: numerical methods

   
Main publications:
  • Izmailov A. F., Karmanov V. G., Tretyakov A. A. Regularization of linear approximate schemes by the gradient descent // SIAM J. Numer. Anal., 2001, 39, 1, 250–263.
  • Izmailov A. F., Solodov M. V. Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications // Math. Program., 2001, 89, 3, 413–435.
  • Arutyunov A. V., Izmailov A. F. Bifurcation theorems via second-order optimality conditions // J. Math. Anal. Appl., 2001, 262, 2, 564–576.
  • Izmailov A. F., Solodov M. V. Optimality conditions for irregular inequality-constrained problems // SIAM J. Control Optim., 2001, 40, 4, 1280–1295.

http://www.mathnet.ru/eng/person17743
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/328384

Publications in Math-Net.Ru
1. New implementations of the 2-factor method
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015),  933–946
2. On the sensitivity of a Euclidean projection
A. F. Izmailov, A. S. Kurennoy
Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  392–403
3. Multiplier methods for optimization problems with Lipschitzian derivatives
A. F. Izmailov, A. S. Kurennoy
Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012),  2140–2148
4. On the influence of the critical Lagrange multipliers on the convergence rate of the multiplier method
A. F. Izmailov, E. I. Uskov
Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  1959–1975
5. On active-set methods for the quadratic programming problem
A. N. Daryina, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 52:4 (2012),  602–613
6. On the application of Newton-type methods to Fritz John optimality conditions
A. F. Izmailov, E. I. Uskov
Zh. Vychisl. Mat. Mat. Fiz., 51:7 (2011),  1194–1208
7. A semismooth sequential quadratic programming method for lifted mathematical programs with vanishing constraints
A. F. Izmailov, A. L. Pogosyan
Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  983–1006
8. On the limiting properties of dual trajectories in the Lagrange multipliers method
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  3–23
9. Semismooth Newton method for quadratic programs with bound constraints
A. N. Daryina, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1785–1795
10. Optimality conditions and newton-type methods for mathematical programs with vanishing constraints
A. F. Izmailov, A. L. Pogosyan
Zh. Vychisl. Mat. Mat. Fiz., 49:7 (2009),  1184–1196
11. A new technique for avoiding the Maratos effect
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009),  241–254
12. Exact penalties for optimization problems with 2-regular equality constraints
E. R. Avakov, A. V. Arutyunov, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 48:3 (2008),  365–372
13. On the Newton-type method with admissible trajectories for mixed complementatiry problems
A. N. Daryina, A. F. Izmailov
Avtomat. i Telemekh., 2007, no. 2,  152–161
14. Necessary Conditions for an Extremum in a Mathematical Programming Problem
E. R. Avakov, A. V. Arutyunov, A. F. Izmailov
Tr. Mat. Inst. Steklova, 256 (2007),  6–30
15. Defining systems and Newton-like methods for finding singular solutions to nonlinear boundary value problems
M. Yu. Erina, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 47:9 (2007),  1467–1485
16. The Gauss–Newton method for finding singular solutions to systems of nonlinear equations
M. Yu. Erina, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 47:5 (2007),  784–795
17. Sensitivity of solutions to systems of optimality conditions under the violation of constraint qualifications
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  555–577
18. Newton-type methods for constrained optimization with nonregular constraints
M. M. Golishnikov, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006),  1369–1391
19. On the analytical and numerical stability of critical Lagrange multipliers
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 45:6 (2005),  966–982
20. On convergence rate estimates for power penalty methods
E. R. Avakov, A. V. Arutyunov, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 44:10 (2004),  1770–1781
21. Optimization problems with complementary constraints: regularity, optimality conditions and sensibility
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1209–1228
22. Sensitivity analysis for abnormal optimization problems with a cone constraint
A. V. Arutyunov, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 44:4 (2004),  586–608
23. Mixed complementary problems: regularity, estimates of the distance to the solution, and Newton's Methods
A. N. Daryina, A. F. Izmailov, M. V. Solodov
Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  51–69
24. The sensitivity theory for abnormal optimization problems with equality constraints
A. V. Arutyunov, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 43:2 (2003),  186–202
25. Checking the sign-definiteness of forms
A. V. Arutyunov, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 42:6 (2002),  800–814
26. Construction of defining systems for finding singular solutions to nonlinear equations
O. A. Brezhneva, A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 42:1 (2002),  10–22
27. On the Andronov–Hopf Bifurcation Theorem
A. F. Izmailov
Differ. Uravn., 37:5 (2001),  609–615
28. Theorems on the representation of nonlinear mapping families and implicit function theorems
A. F. Izmailov
Mat. Zametki, 67:1 (2000),  57–68
29. An approach to finding singular solutions to a general system of nonlinear equations
O. A. Brezhneva, A. F. Izmailov, A. A. Tret'yakov, A. Khmura
Zh. Vychisl. Mat. Mat. Fiz., 40:3 (2000),  365–377
30. 2-regularity and bifurcation theorems
A. F. Izmailov
Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 65 (1999),  90–117
31. Optimality conditions in extremal problems with nonregular inequality constraints
A. F. Izmailov
Mat. Zametki, 66:1 (1999),  89–101
32. Gradient method for linear approximate schemes
A. F. Izmailov, V. G. Karmanov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999),  1625–1632
33. On the stabilizing properties of the gradient method for unstable approximate schemes
A. F. Izmailov, V. G. Karmanov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1453–1463
34. Singular solutions of parametric equations and the method of artificial parametrization
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 39:8 (1999),  1283–1289
35. Stable singular solutions of nonlinear operator equations with a parameter
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 39:5 (1999),  707–717
36. On the gradient method in a Hilbert space in the case of nonisolated minima
A. F. Izmailov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 39:4 (1999),  549–552
37. Some generalizations of the Morse lemma
A. F. Izmailov
Tr. Mat. Inst. Steklova, 220 (1998),  142–156
38. Application of nonsmooth optimization methods to solving nonlinear operator equations
A. F. Izmailov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998),  1452–1460
39. Justification of the quadrature method for nonlinear integral equations
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1153–1161
40. On the convergence of descent methods
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  903–911
41. Methods for finding singular solutions of nonlinear operator equations in the absence of 2-regularity
A. F. Izmailov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 37:10 (1997),  1157–1162
42. Attractors of iterative processors in the presence of noises
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 37:8 (1997),  908–913
43. Methods for solving nonlinear operator equations with singular Fredholm derivatives
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 37:2 (1997),  145–152
44. Stable methods for finding 2-regular solutions of nonlinear operator equations
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 36:9 (1996),  22–34
45. On a local regularization of some classes of nonlinear operator equations
A. F. Izmailov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996),  15–29
46. On higher-order methods for finding singular solutions of nonlinear operator equations
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 36:5 (1996),  20–29
47. On Lagrange methods for finding degenerate solutions of constrained extremum problems
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  10–17
48. The $2$-factor method and multipoint boundary value problems
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 35:11 (1995),  1603–1614
49. Optimality conditions for degenerate extremum problems with inequality-type constraints
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 34:6 (1994),  837–854
50. The method of gradient descent for minimizing non-convex functions
A. F. Izmailov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 34:3 (1994),  344–359
51. Factor analysis of nonlinear mappings and generalization of the notion of 2-regularity
A. F. Izmailov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993),  631–634
52. The reversibility of homogeneous polynomial mappings of degree $p$
A. F. Izmailov, A. A. Tret'yakov
Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993),  323–334
53. Second order optimization methods
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 33:2 (1993),  163–178
54. Degenerate extremum problems with inequality-type constraints
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 32:10 (1992),  1570–1581
55. Necessary higher-order conditions in extremum problems
A. F. Izmailov
Zh. Vychisl. Mat. Mat. Fiz., 32:8 (1992),  1310–1313
56. Derivation of the indirect interaction operator by the path integral method. Exact results in the $s-d$ exchange model
A. F. Izmailov, A. R. Kessel
TMF, 80:3 (1989),  405–417

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018